微积分(A)随缘一题[7]

(1)
设 \(f(x)=|x|\),则 \(f(x)\) 在 \(x=0\) 点连续
且 \(\lim_{x \to 0} \frac{f(x)-f(-x)}{x}=\lim_{x \to 0}\frac{|x|-|-x|}{x}=0\) 存在
因为 \(f_+'(x)=1,f'_-(x)=-1\),所以 \(f'(x)\) 不存在
所以 \(f(x)\) 在 \(x=0\) 处(不一定)可导
(2)
\[(A-\epsilon)x<f(2x)-f(x)<(A+\epsilon)x \\
(A-\epsilon)\frac{x}{2}<f(x)-f(\frac{x}{2})<(A+\epsilon)\frac{x}{2} \\
(A-\epsilon)\frac{x}{2^n}<f(\frac{x}{2^{n-1}})-f(\frac{x}{2^n})<(A+\epsilon)\frac{x}{2^n} \\
\Rightarrow (A-\epsilon)x \frac{1}{2} \frac{1-\frac{1}{2^{n}}}{1-\frac{1}{2}}<f(x)-f(\frac{x}{2^n})<(A+\epsilon) x \frac{1}{2} \frac{1-\frac{1}{2^n}}{1-\frac{1}{2}} \\
\Rightarrow (A-\epsilon) x<f(x)<(A+\epsilon)x \\
\Rightarrow |\frac{f(x)}{x}-A|<\epsilon \\
\Rightarrow f'(0)=A
\]

浙公网安备 33010602011771号