微积分(A)随缘一题[1]
求:\(\lim_{x \to 0}\frac{1-\cos x\sqrt{\cos 2x}\sqrt[3]{\cos 3x}}{x^2}\)
\[\begin{aligned}
&\lim_{x \to 0} \frac{1-\cos x\sqrt{\cos 2x}\sqrt[3]{\cos 3x}}{x^2} \\
=&\lim_{x \to 0}\frac{1-(1-\frac{x^2}{2})\sqrt{1-2x^2}\sqrt[3]{1-\frac{9x^2}{2}}}{x^2} \\
=&\lim_{x \to 0}\frac{1-\sqrt{1-2x^2}\sqrt[3]{1-\frac{9x^2}{2}}}{x^2} +\lim_{x \to 0}\frac{\sqrt{1-2x^2}\sqrt[3]{1-\frac{9x^2}{2}}}{2}\\
=&?+\frac{1}{2}
\end{aligned}
\]
\[\begin{aligned}
&\lim_{x \to 0} \frac{
1-\sqrt{1-2x^2}\sqrt[3]{1-\frac{9x^2}{2}}
}{x^2} \\
=&\lim_{x \to 0} \frac{
1-(1-2x^2)(1-\frac{9x^2}{2})^\frac{2}{3}
}{(1+\sqrt{1-2x^2}\sqrt[3]{1-\frac{9x^2}{2}})x^2} \\
=&\lim_{x \to 0} \frac{
1-(1-2x^2)(1-\frac{9x^2}{2})^\frac{2}{3}
}{2x^2} \\
=&\lim_{x \to 0} \frac{
1-(1-2x^2)(1-\frac{9x^2}{2})^\frac{2}{3}
}{2x^2}
\end{aligned}
\]
\[\begin{aligned}
&\lim_{x \to 0} \frac{
1-(1-2x^2)(1-\frac{9x^2}{2})^\frac{2}{3}
}{2x^2} \\
=&\lim_{x \to 0} \frac{
1-(1-\frac{9x^2}{2})^\frac{2}{3}
}{2x^2}+\lim_{x \to 0}\frac{2x^2(1-\frac{9x^2}{2})^{\frac{2}{3}}}{2x^2} \\
=& (\lim_{x \to 0}\frac{1-(1-\frac{9x^2}{2})^{\frac{2}{3}}}{2x^2})+1
\end{aligned}
\]
令 \(t=\sqrt[3]{1-\frac{9x^2}{2}},x^2=\frac{2}{9}(1-t^3)\)
\[\begin{aligned}
&\lim_{x \to 0} \frac{1-(1-\frac{9x^2}{2})^{\frac{2}{3}}}{2x^2} \\
=&\lim_{t \to 1}\frac{1-t^2}{\frac{4}{9}(1-t^3)} \\
=&\frac{9}{4}\lim_{t \to 1}\frac{(1+t)(1-t)}{(1-t)(1+t+t^2)} \\
=&\frac{9}{4}\frac{2}{3}=\frac{3}{2}
\end{aligned}
\]
所以 \(?=\frac{3}{2}+1=\frac{5}{2},LHS=\frac{5}{2}+\frac{1}{2}=3\)

浙公网安备 33010602011771号