matplotib(五)

一、散点图

##散点图
import numpy as np
import matplotlib.pyplot as plt

n=1024
X=np.random.normal(0,1,n)#每一个点的X值
Y=np.random.normal(0,1,n)#每一个点的Y值
T=np.arctan2(Y,X)#arctan2返回给定的X和Y值的反正切值
#scatter画散点图 size=75 颜色为T 透明度为50% 利用xticks函数来隐藏x坐标轴
plt.scatter(X,Y,s=75,c=T,alpha=0.5)
plt.xlim(-1.5,1.5)
plt.xticks(())#忽略xticks
plt.ylim(-1.5,1.5)
plt.yticks(())#忽略yticks
plt.show()
scatter
plt.colorbar() # 添加颜色栏

二、条形图

n=12
X=np.arange(n)
Y1=(1-X/float(n))*np.random.uniform(0.5,1,n)
Y2=(1-X/float(n))*np.random.uniform(0.5,1,n)
plt.bar(X,Y1,facecolor='#9999ff',edgecolor='white')
plt.bar(X,-Y2,facecolor='#ff9999',edgecolor='white')

#标记值
for x,y in zip(X,Y1):#zip表示可以传递两个值
    plt.text(x+0.4,y+0.05,'%.2f'%y,ha='center',va='bottom')#ha表示横向对齐 bottom表示向下对齐
for x,y in zip(X,Y2):
    plt.text(x+0.4,-y-0.05,'%.2f'%y,ha='center',va='top')
plt.xlim(-0.5,n)
plt.xticks(())#忽略xticks
plt.ylim(-1.25,1.25)
plt.yticks(())#忽略yticks
plt.show()
plt.bar
k = 10
x = np.arange(k)
y = np.random.rand(k)
plt.bar(x, y) # 画出 x 和 y 的柱状图
# 增加数值
for x, y in zip(x, y):
    plt.text(x, y , '%.2f' % y, ha='center', va='bottom') ##%0.2f 保留两个小数点,float型
plt.show()
zip()

设置参数 ha='center' 横向居中对齐,设置 va='bottom'纵向底部(顶部)对齐。

三、多个图展示在同一张图上

plt.figure()
plt.subplot(2,2,1)#表示整个图像分割成2行2列,当前位置为1
plt.plot([0,1],[0,1])#横坐标变化为[0,1] 竖坐标变化为[0,1]
plt.subplot(2,2,2)
plt.plot([0,1],[0,2])
plt.subplot(2,2,3)
plt.plot([0,1],[0,3])
plt.subplot(2,2,4)
plt.plot([0,1],[0,4])
plt.show()
均匀-plt.subplot
plt.figure()
plt.subplot(2,1,1)#表示整个图像分割成2行2列,当前位置为1
plt.plot([0,1],[0,1])#横坐标变化为[0,1] 竖坐标变化为[0,1]
plt.subplot(2,3,4)
plt.plot([0,1],[0,2])
plt.subplot(2,3,5)
plt.plot([0,1],[0,3])
plt.subplot(2,3,6)
plt.plot([0,1],[0,4])
plt.show()
不均匀-plt.subplot

四、分格显示

import matplotlib.gridspec as gridspec#引入新模块
plt.figure()
'''
使用plt.subplot2grid创建第一个小图,(3,3)表示将整个图像分割成3行3列,(0,0)表示从第0行0列开始作图,colspan=3表示列的跨度为3。colspan和rowspan缺省时默认跨度为1
'''
ax1 = plt.subplot2grid((3, 3), (0, 0), colspan=3)  # stands for axes
ax1.plot([1, 2], [1, 2])
ax1.set_title('ax1_title')#设置图的标题
#将图像分割成3行3列,从第1行0列开始做图,列的跨度为2
ax2 = plt.subplot2grid((3, 3), (1, 0), colspan=2)
#将图像分割成3行3列,从第1行2列开始做图,行的跨度为2
ax3 = plt.subplot2grid((3, 3), (1, 2), rowspan=2)
#将图像分割成3行3列,从第2行0列开始做图,行与列的跨度默认为1
ax4 = plt.subplot2grid((3, 3), (2, 0))
ax4.scatter([1, 2], [2, 2])
ax4.set_xlabel('ax4_x')
ax4.set_ylabel('ax4_y')
ax5 = plt.subplot2grid((3, 3), (2, 1))
plt.subplot2grid
plt.figure()
gs = gridspec.GridSpec(3, 3)#将图像分割成3行3列
ax6 = plt.subplot(gs[0, :])#gs[0:1]表示图占第0行和所有列
ax7 = plt.subplot(gs[1, :2])#gs[1,:2]表示图占第1行和第二列前的所有列
ax8 = plt.subplot(gs[1:, 2])
ax9 = plt.subplot(gs[-1, 0])
ax10 = plt.subplot(gs[-1, -2])#gs[-1.-2]表示这个图占倒数第1行和倒数第2行
plt.show()
gridspec.GridSpec
'''
建立一个2行2列的图像窗口,sharex=True表示共享x轴坐标,sharey=True表示共享y轴坐标,((ax11,ax12),(ax13,1x14))表示从到至右一次存放ax11,ax12,ax13,ax114
'''
f, ((ax11, ax12), (ax13, ax14)) = plt.subplots(2, 2, sharex=True, sharey=True)
ax11.scatter([1,2], [1,2])#ax11.scatter 坐标范围x为[1,2],y为[1,2]
plt.tight_layout()#表示紧凑显示图像
plt.show()
plt.subplots

五、图中图

fig=plt.figure()
#创建数据
x=[1,2,3,4,5,6,7]
y=[1,3,4,2,5,8,6]
#绘制大图:假设大图的大小为10,那么大图被包含在由(1,1)开始,宽8高8的坐标系之中。
left, bottom, width, height = 0.1, 0.1, 0.8, 0.8
ax1 = fig.add_axes([left, bottom, width, height])  # main axes
ax1.plot(x, y, 'r')#绘制大图,颜色为red
ax1.set_xlabel('x')#横坐标名称为x
ax1.set_ylabel('y')
ax1.set_title('title')#图名称为title
#绘制小图,注意坐标系位置和大小的改变
ax2 = fig.add_axes([0.2, 0.6, 0.25, 0.25])  #前两个参数表示位置,后两个参数表示大小。
ax2.plot(y, x, 'b')#颜色为blue
ax2.set_xlabel('x')
ax2.set_ylabel('y')
ax2.set_title('title inside 1')
#绘制第二个小图
plt.axes([0.6, 0.6, 0.25, 0.25])
plt.plot(y[::-1], x, 'g')#将y进行逆序
plt.xlabel('x')
plt.ylabel('y')
plt.title('title inside 2')
plt.show()
View Code

六、次坐标轴

x=np.arange(0,10,0.1)
y1=0.5*x**2
y2=-1*y1
fig, ax1 = plt.subplots()
ax2 = ax1.twinx()#镜像显示
ax1.plot(x, y1, 'g-')
ax2.plot(x, y2, 'b-')
ax1.set_xlabel('X data')
ax1.set_ylabel('Y1 data', color='g')#第一个y坐标轴
ax2.set_ylabel('Y2 data', color='b')#第二个y坐标轴
plt.show()
plt.subplots,twinx()

七、动画

from matplotlib import animation#引入新模块
fig,ax=plt.subplots()
x=np.arange(0,2*np.pi,0.01)#数据为0~2PI范围内的正弦曲线
line,=ax.plot(x,np.sin(x))# line表示列表

#构造自定义动画函数animate,用来更新每一帧上x和y坐标值,参数表示第i帧
def animate(i):
    line.set_ydata(np.sin(x+i/100))
    return line,

#构造开始帧函数init
def init():
    line.set_ydata(np.sin(x))
    return line,

# frame表示动画长度,一次循环所包含的帧数;interval表示更新频率 
# blit选择更新所有点,还是仅更新新变化产生的点。应该选True,但mac用户选择False。
ani=animation.FuncAnimation(fig=fig,func=animate,frames=200,init_func=init,interval=20,blit=True)
plt.show()
View Code

 

posted @ 2020-06-28 17:50  pumpkin_J  阅读(90)  评论(0)    收藏  举报