CVMAT操作

  • 综述:
    • OpenCV有针对矩阵操作的C语言函数. 许多其他方法提供了更加方便的C++接口,其效率与OpenCV一样.
    • OpenCV将向量作为1维矩阵处理.
    • 矩阵按行存储,每行有4字节的校整.
  • 分配矩阵空间:
    CvMat* cvCreateMat(int rows, int cols, int type);
    type: 矩阵元素类型. 格式为CV_<bit_depth>(S|U|F)C<number_of_channels>. 
    例如: CV_8UC1 表示8位无符号单通道矩阵, CV_32SC2表示32位有符号双通道矩阵.
    例程:
    CvMat* M = cvCreateMat(4,4,CV_32FC1);
  • 释放矩阵空间:
    1. CvMat* M = cvCreateMat(4,4,CV_32FC1);  
    2. cvReleaseMat(&M);  
     
  • 复制矩阵:
    1. CvMat* M1 = cvCreateMat(4,4,CV_32FC1);  
    2. CvMat* M2;  
    3. M2=cvCloneMat(M1);  
     
  • 初始化矩阵:
    1. double a[] = { 1,   2,   3,   4,   5,   6,   7,   8, 9, 10, 11, 12 };  
    2. CvMat Ma=cvMat(3, 4, CV_64FC1, a);   
    另一种方法:
    1. CvMat Ma;  
    2. cvInitMatHeader(&Ma, 3, 4, CV_64FC1, a);  
  • 初始化矩阵为单位阵:
    1. CvMat* M = cvCreateMat(4,4,CV_32FC1);  
    2. cvSetIdentity(M); // 这里似乎有问题,不成功  
     

存取矩阵元素

  • 假设需要存取一个2维浮点矩阵的第(i,j)个元素.
  • 间接存取矩阵元素:
    1. cvmSet(M,i,j,2.0); // Set M(i,j)  
    2. t = cvmGet(M,i,j); // Get M(i,j)  
     
  • 直接存取,假设使用4-字节校正:
    1. CvMat* M     = cvCreateMat(4,4,CV_32FC1);  
    2. int n  = M->cols;  
    3. float *data = M->data.fl;  
    4. data[i*n+j] = 3.0;  
     
  • 直接存取,校正字节任意:
    1. CvMat* M     = cvCreateMat(4,4,CV_32FC1);  
    2. int    step   = M->step/sizeof(float);  
    3. float *data = M->data.fl;  
    4. (data+i*step)[j] = 3.0;  
     
  • 直接存取一个初始化的矩阵元素:
    1. double a[16];  
    2. CvMat Ma = cvMat(3, 4, CV_64FC1, a);  
    3. a[i*4+j] = 2.0; // Ma(i,j)=2.0;  
     

矩阵/向量操作

  • 矩阵-矩阵操作:
    1. CvMat *Ma, *Mb, *Mc;  
    2. cvAdd(Ma, Mb, Mc);       // Ma+Mb    -> Mc  
    3. cvSub(Ma, Mb, Mc);       // Ma-Mb    -> Mc  
    4. cvMatMul(Ma, Mb, Mc);    // Ma*Mb    -> Mc  
     
  • 按元素的矩阵操作:
    1. CvMat *Ma, *Mb, *Mc;  
    2. cvMul(Ma, Mb, Mc);       // Ma.*Mb   -> Mc  
    3. cvDiv(Ma, Mb, Mc);       // Ma./Mb   -> Mc  
    4. cvAddS(Ma, cvScalar(-10.0), Mc); // Ma.-10 -> Mc  
     
  • 向量乘积:
    1. double va[] = {1, 2, 3};  
    2. double vb[] = {0, 0, 1};  
    3. double vc[3];  
    4. CvMat Va=cvMat(3, 1, CV_64FC1, va);  
    5. CvMat Vb=cvMat(3, 1, CV_64FC1, vb);  
    6. CvMat Vc=cvMat(3, 1, CV_64FC1, vc);  
    7. double res=cvDotProduct(&Va,&Vb); // 点乘:    Va . Vb -> res  
    8. cvCrossProduct(&Va, &Vb, &Vc);     // 向量积: Va x Vb -> Vc  
    9. end{verbatim}  
     

    注意 Va, Vb, Vc 在向量积中向量元素个数须相同.

  • 单矩阵操作:
    1. CvMat *Ma, *Mb;  
    2. cvTranspose(Ma, Mb);       // transpose(Ma) -> Mb (不能对自身进行转置)  
    3. CvScalar t = cvTrace(Ma); // trace(Ma) -> t.val[0]   
    4. double d = cvDet(Ma);      // det(Ma) -> d  
    5. cvInvert(Ma, Mb);          // inv(Ma) -> Mb  
     
  • 非齐次线性系统求解:
    1. CvMat* A   = cvCreateMat(3,3,CV_32FC1);  
    2. CvMat* x   = cvCreateMat(3,1,CV_32FC1);  
    3. CvMat* b   = cvCreateMat(3,1,CV_32FC1);  
    4. cvSolve(&A, &b, &x);     // solve (Ax=b) for x  
     
  • 特征值分析(针对对称矩阵):
    1. CvMat* A   = cvCreateMat(3,3,CV_32FC1);  
    2. CvMat* E   = cvCreateMat(3,3,CV_32FC1);  
    3. CvMat* l   = cvCreateMat(3,1,CV_32FC1);  
    4. cvEigenVV(&A, &E, &l);   // l = A的特征值 (降序排列) ,  E = 对应的特征向量 (每行)  
     
  • 奇异值分解SVD:
    1. CvMat* A   = cvCreateMat(3,3,CV_32FC1);  
    2. CvMat* U   = cvCreateMat(3,3,CV_32FC1);  
    3. CvMat* D   = cvCreateMat(3,3,CV_32FC1);  
    4. CvMat* V = cvCreateMat(3,3,CV_32FC1);  
    5. cvSVD(A, D, U, V, CV_SVD_U_T|CV_SVD_V_T); // A = U D V^T  
     

    标号使得 U 和 V 返回时被转置(若没有转置标号,则有问题不成功!!!).

posted on 2011-08-05 09:53  伪君  阅读(283)  评论(0编辑  收藏  举报

导航