P1004 方格取数
题目描述
设有N×NN \times NN×N的方格图(N≤9)(N \le 9)(N≤9),我们将其中的某些方格中填入正整数,而其他的方格中则放入数字000。如下图所示(见样例):
A
0 0 0 0 0 0 0 0
0 0 13 0 0 6 0 0
0 0 0 0 7 0 0 0
0 0 0 14 0 0 0 0
0 21 0 0 0 4 0 0
0 0 15 0 0 0 0 0
0 14 0 0 0 0 0 0
0 0 0 0 0 0 0 0
B
某人从图的左上角的AAA点出发,可以向下行走,也可以向右走,直到到达右下角的BBB点。在走过的路上,他可以取走方格中的数(取走后的方格中将变为数字000)。
此人从AAA点到BBB点共走两次,试找出222条这样的路径,使得取得的数之和为最大。
输入格式
输入的第一行为一个整数NNN(表示N×NN \times NN×N的方格图),接下来的每行有三个整数,前两个表示位置,第三个数为该位置上所放的数。一行单独的000表示输入结束。
输出格式
只需输出一个整数,表示222条路径上取得的最大的和。
输入输出样例
输入 #1
8 2 3 13 2 6 6 3 5 7 4 4 14 5 2 21 5 6 4 6 3 15 7 2 14 0 0 0
输出 #1
67
说明/提示
NOIP 2000 提高组第四题
思路
我们考虑两个人同时走,就相当于数字三角形。状态转移方程为:
f[i][j][k][l]=max(f[i−1][j][k−1][l],f[i−1][j][k][l−1],f[i][j−1][k−1][l],f[i][j−1][k][l−1])+a[i][j]+a[k][l];
不过要判断i=k&&j=l的情况。
代码
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
const int N=15;
int n,x,y,z;
int map[N][N];
int f[N][N][N][N];
int main () {
memset(map,0,sizeof(map));
scanf("%d",&n);
scanf("%d%d%d",&x,&y,&z);
while(x!=0||y!=0||z!=0) {
map[x][y]=z;
scanf("%d%d%d",&x,&y,&z);
}
for(int i=1; i<=n; i++)
for(int j=1; j<=n; j++)
for(int k=1; k<=n; k++)
for(int l=1; l<=n; l++) {
f[i][j][k][l]=max(max(f[i-1][j][k-1][l],f[i-1][j][k][l-1]),max(f[i][j-1][k-1][l],f[i][j-1][k][l-1]))+map[i][j]+map[k][l];
if(i==k&&l==j)
f[i][j][k][l]-=map[i][j];
}
printf("%d\n",f[n][n][n][n]);
return 0;
}

浙公网安备 33010602011771号