《Aidlux11月AI实战训练营》作业心得
1 训练营课程链接
实战训练营的课程:https://mp.weixin.qq.com/s/3WrTMItNAGt8l2kjjf042w。
2. 学习目的
基于车辆检测+AI安全+分类模型的模式,将攻击与防御注入到检测任务与分类任务的级联点中,完成AI项目的对抗攻防安全功能。
3. 代码实现
整体流程:检测->截取检测目标的小图->送入对抗攻击监测模块->如有问题发送喵提醒
# aidlux相关 from cvs import * import aidlite_gpu from utils import detect_postprocess, preprocess_img, draw_detect_res, extract_detect_res import time import cv2,os import numpy as np import torch.nn as nn import requests import torch from timm.models import create_model from advertorch.utils import NormalizeByChannelMeanStd from advertorch_examples.utils import bhwc2bchw from advertorch_examples.utils import bchw2bhwc ### 对抗攻击监测模型 class Detect_Model(nn.Module): def __init__(self, num_classes=2): super(Detect_Model, self).__init__() self.num_classes = num_classes #model = create_model('mobilenetv3_large_075', pretrained=False, num_classes=num_classes) model = create_model('resnet50', pretrained=False, num_classes=num_classes) # self.multi_PreProcess = multi_PreProcess() pth_path = os.path.join("/home/Lesson5_code/model", 'track2_resnet50_ANT_best_albation1_64_checkpoint.pth') #pth_path = os.path.join("/Users/rocky/Desktop/训练营/Lesson5_code/model/", "track2_tf_mobilenetv3_large_075_64_checkpoint.pth") state_dict = torch.load(pth_path, map_location='cpu') is_strict = False if 'model' in state_dict.keys(): model.load_state_dict(state_dict['model'], strict=is_strict) else: model.load_state_dict(state_dict, strict=is_strict) normalize = NormalizeByChannelMeanStd( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) # self.model = nn.Sequential(normalize, self.multi_PreProcess, model) self.model = nn.Sequential(normalize, model) def load_params(self): pass def forward(self, x): # x = x[:,:,32:193,32:193] # x = F.interpolate(x, size=(224,224), mode="bilinear", align_corners=True) # x = self.multi_PreProcess.forward(x) out = self.model(x) if self.num_classes == 2: out = out.softmax(1) #return out[:,1:] return out[:,1:] device = "cuda" if torch.cuda.is_available() else "cpu" detect_model = Detect_Model().eval().to(device) # AidLite初始化:调用AidLite进行AI模型的加载与推理,需导入aidlite aidlite = aidlite_gpu.aidlite() # Aidlite模型路径 model_path = '/home/Lesson5_code/yolov5_code/models/yolov5_car_best-fp16.tflite' # 定义输入输出shape in_shape = [1 * 640 * 640 * 3 * 4] out_shape = [1 * 25200 * 6 * 4] # 加载Aidlite检测模型:支持tflite, tnn, mnn, ms, nb格式的模型加载 aidlite.ANNModel(model_path, in_shape, out_shape, 4, 0) # 读取图片进行推理 # 设置测试集路径 source = "/home/Lesson5_code/yolov5_code/data/images/tests" images_list = os.listdir(source) print(images_list) frame_id = 0 # 读取数据集 for image_name in images_list: frame_id += 1 print("frame_id:", frame_id) image_path = os.path.join(source, image_name) frame = cvs.imread(image_path) # 预处理 img = preprocess_img(frame, target_shape=(640, 640), div_num=255, means=None, stds=None) # 数据转换:因为setTensor_Fp32()需要的是float32类型的数据,所以送入的input的数据需为float32,大多数的开发者都会忘记将图像的数据类型转换为float32 aidlite.setInput_Float32(img, 640, 640) # 模型推理API aidlite.invoke() # 读取返回的结果 pred = aidlite.getOutput_Float32(0) # 数据维度转换 pred = pred.reshape(1, 25200, 6)[0] # 模型推理后处理 pred = detect_postprocess(pred, frame.shape, [640, 640, 3], conf_thres=0.25, iou_thres=0.45) # 绘制推理结果 res_img = draw_detect_res(frame, pred) # cvs.imshow(res_img) # 测试结果展示停顿 #time.sleep(5) # 图片裁剪,提取车辆目标区域 # extract_detect_res(frame, pred, image_name) ''' 检测结果提取 ''' img, all_boxes, image_name = frame, pred, image_name img = img.astype(np.uint8) color_step = int(255/len(all_boxes)) for bi in range(len(all_boxes)): if len(all_boxes[bi]) == 0: continue count = 0 for box in all_boxes[bi]: x, y, w, h = [int(t) for t in box[:4]] #cv2.putText(img, f'{coco_class[bi]}', (x, y), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2) #cv2.rectangle(img, (x,y), (x+w, y+h),(0, bi*color_step, 255-bi*color_step),thickness = 2) cut_img = img[y:(y+h), x:(x + w)] cv2.resize(cut_img,(80,177)) img = torch.tensor(bhwc2bchw(cut_img))[None, :, :, :].float().to(device) ### 对抗攻击监测 detect_pred = detect_model(img) print(detect_pred) if detect_pred > 0.5: id = 'tGinrX9' # 填写喵提醒中,发送的消息,这里放上前面提到的图片外链 text = "出现对抗攻击风险!!" ts = str(time.time()) # 时间戳 type = 'json' # 返回内容格式 request_url = "http://miaotixing.com/trigger?" headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.67 Safari/537.36 Edg/87.0.664.47'} result = requests.post(request_url + "id=" + id + "&text=" + text + "&ts=" + ts + "&type=" + type, headers=headers) # cv2.imwrite("/home/Lesson5_code/yolov5_code/aidlux/extract_results/" + image_name + "_" + str(count) + ".jpg",cut_img) count += 1
实现视频:
https://zhuanlan.zhihu.com/p/589784525
4. 总结
加深了对AidLux的认识,同时学习了对抗攻击等知识。
浙公网安备 33010602011771号