mylinuxer

  博客园  :: 首页  :: 新随笔  :: 联系 :: 订阅 订阅  :: 管理

转载 http://weibo.com/p/1001603890949213305527

(一)硬中断
中断基础

关于中断的概念,很多人还停留在书本上,我们结合实际的操作系统来理解。先给出硬中断和软中断的介绍:

硬中断:外设处理过程中产生的,通过硬件控制器通知cpu自己的状态变化。

软中断:硬中断应该很快完成,才能有快的响应,所以将一部分可以延迟的处理从硬中断里独立出来,当硬中断处理完之后再处理这部分,就是软中断。

下面,我们以linux为例,分析一下中断的嵌套情况。

硬中断的嵌套

《深入理解linux内核》中讲过,linux下的硬中断处理是可以嵌套的,并且没有优先级。也就是说,一个中断可以打断正在执行的中断(同种中断除外,后文会讲)。无优先级地支持硬中断嵌套有两个主要原因:短时间内接受更多的中断,可以有大的设备控制吞吐量;无优先级可以简化内核,提高移植性。

硬中断的具体linux实现流程是:(参考linux kernel 4.0)

硬中断的汇编处理->do_IRQ->handle_irq->handle_edge_irq(handle_level_irq)->handle_irq_event->具体设备的硬中断处理

同种中断不嵌套是通过设置该种中断的数据结构的IRQD_IRQ_INPROGRESS标志位来屏蔽(本cpu和其它cpu的同种中断)的,置位表示已经在处理该种中断了,同种中断会判断此标志而退出,同时置上IRQS_PENDING标志位表示此种中断还需继续处理。这个过程是不是很类似于软中断的防止嵌套的套路?我们的理解是:它们本质是一样的,只是硬中断这里防的是同种类型(即使是不同cpu上),而软中断那里防的是所有类型(只在同一个cpu上,还记得软中断基于per-cpu的数据结构吧),但防范机制是一样的!

据此,我们可以推出硬中断的最大的嵌套层数是:硬中断的类型数(同时需要未设置IRQF_DISABLED标志位,马上讲到)。

2009年开源社区已经开始讨论默认设置IRQF_DISABLED标志位(http://lwn.net/Articles/321663/):如果设置了IRQF_DISABLED,那么该硬中断不允许被打断,也就禁止了嵌套。实际应用中,由于多队列网卡(一个网卡不再仅仅产生一种中断了,可能多达数十个!)会导致中断栈溢出,故于2010年终于关闭硬中断嵌套机制了,具体参考patch:e58aa3d2d0cc01ad8d6f7f640a0670433f794922(genirq: Run irqhandlers with interrupts disabled)

想想,有很多非常重要的事要做,是逐个做还是打断式并行做?如果是人去做的话,肯定会选逐个做。机器也一样?打断式并行做导致记录现场的存储量过大而崩溃。。。

硬中断的提速很重要,不管是拆分出软中断还是中断线程化,都是希望硬中断不要过多影响用户进程(特别是实时进程),毕竟有些硬中断和某些高优先级用户进程相比,其实并不重要。

软中断的嵌套

同种软中断不可以嵌套,但可以并行在不同cpu上,即使是同种类型。详细讲解请参考我们之前的《理解linux内核的软中断(上/下)》。

总结

简洁地讲解硬中断和软中断的嵌套情况,硬中断的目标很明确:要快,不能影响系统其它高优先级进程。硬中断的详细细节(包括PIC/APIC/EDGE/LEVEL等)我们以后再讲。(纯属我们自己理解,如有不妥,还望指正)

软中断介绍

把可以延迟的处理从硬中断处理程序独立出来,这样这个处理可以在开中断的情况下运行,这个处理就是软中断。可见,软中断的这种脱离可以大大缩短硬中断的响应时间,对于很多实时应用来说及其重要。

 

(二)软中断

我们本文只谈软中断,至于tasklet、workqueue等我们以后再谈。我们在讲述软中断流程(参考linux kernel 4.0)时会尝试深入理解其中的各个细节之处,分享我们自己的理解(如果不正,还望指出,谢谢)。

软中断数据结构的定义

软中断目前有10(由NR_SOFTIRQS定义)个,通过softirq_vec[NR_SOFTIRQS]数组来管理这些软中断,全部cpu共用。

软中断的注册

通过open_softirq()将具体的软中断处理函数和软中断编号绑定。如网络系统注册了收发包的软中断处理函数:

软中断的激活

每个cpu都有一个32bit的位图(即__softirq_pending)来维护本cpu上的软中断是否激活。

软中断的激活时机之一:irq_exit

irq_exit函数里可能会激活软中断,激活条件是:

不在硬中断里并且不在软中断里并且本cpu的__softirq_pending中有置位。

由这个条件,我们可以知道,软中断和硬中断在这里是同等对待(在in_interrupt里)的,体现都是中断处理这一个本质。不能在硬中断里的条件,表明必须优先性,必须硬中断全部处理完,才考虑软中断;不能在软中断里的条件,表明屏蔽了软中断的嵌套。

invoke_softirq函数的处理是,要么(先唤醒ksoftirqd)将软中断交由ksoftirqd专门线程处理,要么直接调用__do_softirq即时处理(当然,即时处理要区分是在哪个栈上:是当前栈上还是在独立的软中断栈上)。

我们看看即时处理这个流程。local_softirq_pending前肯定会清除preempt_count中的硬中断位,如果此时preempt_count里没有软中断位则可以被抢占(即时关闭硬中断)。在进入到__do_softirq处理各个软中断期间,肯定是禁止抢占了。在硬(软)中断上下文里的抢占是众所周知不被允许的:会让被中断的进程执行时间不确定,也是不公平的(也就是说,不要在硬中断和软中断的处理中有调度离开的意向)。

软中断的激活时机之二:raise_softirq

网卡收包方式从非NAPI进化到NAPI方式,就充分展示了软中断的优点:把收报任务最大程度地交给软中断处理,最大程度简化硬中断处理。这种进化,我们以后再讲。

raise_softirq函数会调用__raise_softirq_irqoff函数,在指定cpu的__softirq_pending位图上置位相应的软中断。raise_softirq_irqoff函数和raise_softirq函数的区别是关中断的操作是否已经完成了。置位位图是一个竞争操作,所有硬中断里都可能做,所以得保证在关中断的情况下完成。

软中断的激活之三:ksoftirqd

每个cpu都有一个ksoftirqd线程在软中断量大时专门处理软中断:

ksoftirqd线程的核心函数run_ksoftirqd的(循环)处理是:关中断看本cpu的__softirq_pending的置位情况,如有则执行__do_softirqd(),执行完开中断)。这个执行很顺畅,因为是在该线程自己的栈上,不会有影响用户进程的问题。

这里有个疑问,此处以前是关抢占保护,现在是关中断的保护了(参考2012年的patch 3e339b,softirq: Use hotplugthread infrastructure)?我们的理解是:关抢占的保护方式,会让后续更多的软中断由ksoftirqd处理,不符合ksoftirqd的辅助地位。就处理软中断的地位而言,应该是irq_exit的为主,ksoftirqd的为辅。)

ksoftirqd里也可以看到,在执行软中断前是可以被抢占的,但是一旦开始执行就不能被抢占了(和上面的调度之一:irq_exit中的讲述的思想是一致的)。就是说,软中断和硬中断的处理思想是一致的:执行期间不允许发生调度!

上述不能抢占的原因其实就是类似事务性的一个原则:一旦开始不能停止。另外一个原因是,执行的是用户自定义的硬(软)中断程序,操作具有不确定性,如果让这些操作期间具有调度可能,则会脱离内核的控制范围。

软中断的激活之四:其他地方

比如netif_rx_ni(),执行do_softirq前关抢占,不能在执行软中断期间调度。

软中断的激活之五:local_bh_enable时

想想,如果异常和软中断有共享数据的话,异常处理走到此共享数据的临界区时需要关软中断,但不需要关硬中断。那么当走完临界区时,需要开软中断,此时就是一个激活时机(看preempt_count了,其实可能也是一个抢占时机)。

用“激活”而不是“调用”的原因是外围处理仅修改本cpu的__softirq_pending位图,最后由核心机制(比如ksoftirqd、能通过in_interrupt检查的软中断处理)真正处理,而这就是软中断的理念:让硬中断(或者其它)更快执行,所以不会采用直接调用的方式。

“激活”的原则是谁激活,谁处理,哪个cpu上的硬中断带来的软中断就由哪个cpu处理(或者说,归属cpu是软中断跟着硬中断走)。这样,充分发挥smp的优势,均衡到各个cpu上。至于硬中断和cpu之间的关系,我们以后讲到硬中断时再讨论。每个cpu维护自己的软中断机制就行了,各个cpu是互不相关的。注意,还是有相关性的:各个cpu并行处理同一类型的软中断时,该类型软中断处理需要为共享数据做保护,这是软中断可重入性需要付出的代价。

我们接着讲软中断的核心机制相关函数:do_softirq以及__do_softirq。

软中断核心函数处理之do_softirq

do_softirq先检查软中断重入条件:必须不在硬中断里并且不在软中断里,符合条件之后就可以开始做如下的软中断处理了:

这个处理是在关中断的保护下完成的,毕竟软中断和硬中断本质上是一样的,都是中断体系的(当然,进入到硬/软中断内部再开则另当别论了)。也可以看到,局部变量pending没有传入__do_softirq内部,所以此处仅是判断,不是使用,此处判断值和内部使用值可能有差异,位图中置位位数会少一些。

我们再深究一下这个检查条件。我们的理解是:

这个条件达到了两个效果:同一个cpu上的软中断不嵌套;嵌套硬中断中不处理软中断。就同一个cpu而言,__do_softirq函数的执行是串行的,非重入的(do_softirq函数可以说是可重入的);就多个cpu而言,__do_softirq函数是可重入的,即使是同一个类型的软中断。也就是说,软中断通过这个检查条件做到了本cpu上的软中断处理串行化,当然,多cpu之间的还是并行的,所以同一类型软中断处理还是需要保护自己的相关共享数据结构的。

软中断核心函数处理之__do_softirq

__do_softirq函数处理是尽量(虽然可能还是执行不完)执行所有被激活的软中断(由本cpu上的__softirq_pending位图标识)处理。我们分三个阶段分析。

准备处理阶段:关闭软中断(效果是让上面提到的检查条件为真,从而达到禁止本cpu上的软中断嵌套的目的)。

核心处理阶段:关硬中断,获得本cpu的__softirq_pending位图并存储起来,清空位图,开硬中断(仅在读写位图时需要关硬中断,防止其它硬中断同时操作)。执行本cpu的所有软中断(由存储起来的位图获得)。这个核心处理是个循环,最多10次(MAX_SOFTIRQ_RESTART),毕竟此时用的是用户进程的栈,不能借用太久。退出循环的条件是:总时间超出或者被抢占(开中断就会有被抢占)或者达到10次了。

结尾处理阶段:关硬中断,开软中断。

另外,如果10次循环都解决不完软中断,说明期间发生的硬中断很多,带来的额外的软中断也很多。那么就不继续影响借用的用户进程栈了,直接交给专门的ksoftirqd内核线程处理。这也就说明了循环的含义:处理软中断期间时还会进入新的硬中断,从而带进新的软中断(当然,仅仅是在本cpu的__softirq_pending上置位,不会有实际处理),所以需要反复去处理(处理的目标很明确,就是要清空本cpu上的__softirq_pending位图)。

再看看那个防止软中断嵌套的流程。关软中断中肯定有一句原子地加1的关键语句,如果当前内核路径A在该原子操作之前被另一个内核路径B打断,则B执行完硬中断和软中断后,返回到A的此处,A接着执行该原子操作,之后的软中断处理应该是空转,因为肯定已经被B处理完了。如果在该原子操作之后被B打断,则B执行完硬中断,不会执行自己的软中断而是会直接退出(因为软中断嵌套了),返回到A的此处,A接着执行,这次A除了处理自己软中断,还会额外地处理B的软中断。

对于preempt_count中的软中断位,由上述可以知道,它的作用有两个:防止软中断在单cpu上嵌套;保证了在执行软中断期间不被抢占。

最后,还得重复一句:这里讲的__do_softirq函数都是在一个cpu上的处理,多个cpu上的并行是不受任何控制的。

总结

关于中断的时序貌似很复杂,但其实都逃不过两个原则:硬中断会打断硬中断(当然是不同类型的);硬中断会打断软中断(同样地:软中断不会打断硬中断,软中断也不会打断软中断)。所有貌似复杂的时序其实都只是这两个的叠加而已。

新浪微博(@NP等不等于P

计算机学习微信公众号(jsj_xx)

原创技术文章,感悟计算机,透彻理解计算机!

 

posted on 2016-01-26 10:10  mylinuxer  阅读(705)  评论(0编辑  收藏  举报