摘要: 过拟合、欠拟合以及解决方法 训练误差和泛化误差 在机器学习中,我们将数据分为训练数据、测试数据(或者训练数据、验证数据、测试数据,验证数据也是训练数据的一部分。)训练误差是模型在训练数据集上表现出来的误差,泛化误差(也可称为测试误差)是在测试数据集上表现出来的误差的期望。,例如线性回归用到的平方损失 阅读全文
posted @ 2020-02-15 23:23 在路上= 阅读(736) 评论(0) 推荐(0)