二叉树
1.二叉树
1. 定义:
是每个节点最多只能有两个儿子的树。
2.应用
查找树:所有节点左小右大
平衡树:左右子树深度差1
判定数:分支查找树(例如12个球如何只称3次就能分出轻重)
带权树:路径带权
最优树:带权路径长度最短的树,通信中的压缩编码
2.查找二叉树
1.定义
为每个节点指定一个关键值,每个节点的左子树的关键值都小于节点的关键值,而右子树的关键值都大于节点的关键值。
或者是一颗空树,或者是具有如下性质的非空二叉树:
(1)若左子树不为空,左子树的所有结点的值均小于根的值;
(2)若右子树不为空,右子树的所有结点均大于根的值;
(3)它的左右子树也分别为二叉排序树。
平均深度为O(logN)。
2. 查找二叉树的实现
1.fatal.h
#include <stdio.h>
#include<stdlib.h>
#define Error(str) FatalError(str)
#define FatalError(str) fprintf(stderr,"%s\n",str),system("pause"),exit(1)
2.searchtree.h
#include<stdio.h> typedef int ElementType; #ifndef _Tree_H struct TreeNode; typedef struct TreeNode *Position; typedef struct TreeNode *SearchTree; SearchTree MakeEmpty(SearchTree T); Position Find(ElementType X, SearchTree T); Position FindMin(SearchTree T); Position FindMax(SearchTree T); SearchTree Insert(ElementType X, SearchTree T); SearchTree Delete(ElementType X, SearchTree T); ElementType Retrieve(Position P); void Preorder(SearchTree T); #endif
3.searchtree.c
#include "searchtree.h"
#include "fatal.h"
#include <stdio.h>
#include <stdlib.h>
struct TreeNode
{
ElementType Element;
SearchTree Left;
SearchTree Right;
};
SearchTree MakeEmpty(SearchTree T)
{
if (T!=NULL)
{
MakeEmpty(T->Left);
MakeEmpty(T->Right);
free(T);
}
return NULL;
}
/*
在二叉排序树b中查找x的过程为:
- 若b是空树,则搜索失败,否则:
- 若x小于b的根节点的数据域之值,则搜索左子树;否则:
- 若x大于b的根节点的数据域之值,则搜索右子树;否则:
- x等于b的根节点数据域的值,查找成功。
*/
Position Find(ElementType X, SearchTree T)
{
if (T==NULL)
{
return NULL;
}
if (X < T->Element)
{
return Find(X, T->Left);
}
else if (X > T->Element)
{
return Find(X, T->Right);
}
else
{
return T;
}
}
Position FindMin(SearchTree T)
{
if (T == NULL)
{
return NULL;
}
else if (T->Left == NULL)
{
return T;
}
else
{
return FindMin(T->Left);
}
}
Position FindMax(SearchTree T)
{
//if (T == NULL)
//{
// return NULL;
//}
//else if (T->Right == NULL)
//{
// return T;
//}
//else
//{
// return FindMax(T->Right);
//}
if (T != NULL)
{
while (T->Right != NULL)
{
T = T->Right;
}
}
return T;
}
ElementType Retrieve(Position P)
{
return P->Element;
}
/*
向一个二叉排序树b中插入一个结点s,过程为:
- 若b是空树,则将s所指结点作为根结点插入,否则:
- 若s->data小于b的根结点的数据域之值,则把s所指的节点插入到左子树,否则:
- 若s->data大于b的根结点的数据域之值,则把s所指结点插入到右子树中,否则:
- 把s->data等于根节点的数据域的值,已经存在,什么也不做。
*/
SearchTree Insert(ElementType X, SearchTree T)
{
if (T == NULL)
{
T = malloc(sizeof(struct TreeNode));
if (T == NULL)
{
FatalError("out of space!!!");
}
else
{
T->Element = X;
T->Left = T->Right = NULL;
}
}
else if (X < T->Element)
T->Left = Insert(X, T->Left);
else if (X > T->Element)
T->Right = Insert(X, T->Right);
return T;
}
/*
1. 若x小于根节点的数据域的值,则删除左子树中X的值,否则
2. 若x大于根节点的数据域的值,则删除右子树的x的值,否则
3. 若根具有左子树和右子树,则删去根节点,从右子树的最小值作为新的根节点,并删去右子树的最小值,或者从左子树的最大值最为新的根节点,并删去左子树的最大值,否则
4. 若根只有一个子树,则删去根节点,将子树返回,否则
5. 该节点为叶子节点,直接删除
*/
SearchTree Delete(ElementType X, SearchTree T)
{
Position TmpCell;
if (T == NULL)
{
Error("Element not found");
}
else if (X < T->Element)
T->Left = Delete(X, T->Left);
else if (X>T->Right)
T->Right = Delete(X, T->Right);
else
{
if (T->Left && T->Right)
{
TmpCell = FindMin(T->Right);
T->Element = TmpCell->Element;
T->Right = Delete(T->Element, T->Right);
}
else
{
TmpCell = T;
if (T->Left == NULL)
{
T = T->Right;
}
else if (T->Right == NULL)
{
T = T->Left;
}
free(TmpCell);
}
}
return T;
}
void Preorder(SearchTree T)
{
if (T == NULL)
{
Error("Tree not found");
}
if (T->Left != NULL)
{
Preorder(T->Left);
}
if (T->Right != NULL)
{
Preorder(T->Right);
}
printf("%d\t", Retrieve(T));
}
4.testsearchtree.c
#include "fatal.h"
#include "searchtree.h"
#include <stdio.h>
#include <stdlib.h>
void main1()
{
SearchTree T = NULL;
T = MakeEmpty(T);
int i = 0;
for (i = 0; i < 10;i++)
{
T= Insert(i, T);
}
Preorder(T);
for (i = 0; i < 10; i++)
{
T = Delete(i, T);
}
system("pause");
}
main()
{
SearchTree T;
Position P;
int i;
int j = 0;
T = MakeEmpty(NULL);
for (i = 0; i < 50; i++)
T = Insert(i, T);
//for (i = 0; i < 50; i++, j = (j + 7) % 50)
// T = Insert(j, T);
Preorder(T);
for (i = 0; i < 50; i++)
if ((P = Find(i, T)) == NULL /*|| Retrieve(P) != i*/)
printf("Error at %d\n", i);
for (i = 0; i < 50; i ++)
T = Delete(i, T);
//for (i = 1; i < 50; i += 2)
// if ((P = Find(i, T)) == NULL || Retrieve(P) != i)
// printf("Error at %d\n", i);
//for (i = 0; i < 50; i += 2)
// if ((P = Find(i, T)) != NULL)
// /*printf("Error at %d\n", i);*/
printf("Min is %d, Max is %d\n", Retrieve(FindMin(T)),
Retrieve(FindMax(T)));
system("pause");
return 0;
}
3. 平衡二叉树
1.定义
一棵AVL树是其每个节点的左子树和右左子树的高度最多差1的二叉查找树。
节点的平衡因子BF=左子树深度-右子树深度。
树的深度保持为O(logN)。
2.平衡二叉树的实现
1. avl.h
#include <stdio.h> typedef int ElementType; #ifndef _AvlTree_H struct AvlNode; typedef struct AvlNode *Position; typedef struct AvlNode *AvlTree; AvlTree MakeEmpty(AvlTree T); Position Find(ElementType X, AvlTree T); Position FindMin(AvlTree T); Position FindMax(AvlTree T); AvlTree Insert(ElementType X, AvlTree T); AvlTree Delete(ElementType X, AvlTree T); ElementType Retrieve(Position P); #endif
2.avl.c
#include "avl.h"
#include "fatal.h"
#include <stdio.h>
struct AvlNode
{
ElementType Element;
AvlTree Left;
AvlTree Right;
int Height;
};
AvlTree MakeEmpty(AvlTree T)
{
if (T != NULL)
{
MakeEmpty(T->Left);
MakeEmpty(T->Right);
free(T);
}
return NULL;
}
Position Find(ElementType X, AvlTree T)
{
if (T == NULL)
{
return NULL;
}
if (X < T->Element)
{
return Find(X, T->Left);
}
if (X>T->Element)
{
return Find(X, T->Right);
}
return T;
}
Position FindMin(AvlTree T)
{
if (T == NULL)
{
return NULL;
}
if (T->Left == NULL)
{
return T;
}
return FindMin(T->Left);
}
Position FindMax(AvlTree T)
{
if (T!= NULL)
{
while (T->Right != NULL)
{
T = T->Right;
}
}
return T;
}
static int Height(Position P)
{
if (P == NULL)
{
return -1;
}
else
{
return P->Height;
}
}
static Position SingleRoateWithLeft(Position K2)
{
Position K1;
K1 = K2->Left;
K2->Left = K1->Right;
K2->Height = max(Height(K2->Left), Height(K2->Right)) + 1;
K1->Height = max(Height(K1->Left), K2->Height) + 1;
return K1;
}
static Position SingleRoateWithRight(Position K1)
{
Position K2;
K2 = K1->Right;
K1->Right = K2->Left;
K2->Left = K1;
K1->Height = max(Height(K1->Left), Height(K1->Right)) + 1;
K2->Height = max(K1->Height, Height(K2->Right)) + 1;
return K2;
}
static Position DoubleRoateWithLeft(Position K3)
{
K3->Left = SingleRoateWithRight(K3->Left);
return SingleRoateWithLeft(K3);
}
static Position DoubleRoateWithRight(Position K1)
{
K1->Right = SingleRoateWithLeft(K1->Right);
return SingleRoateWithRight(K1);
}
AvlTree Insert(ElementType X, AvlTree T)
{
//空树
if (T== NULL)
{
T = malloc(sizeof(struct AvlNode));
if (T == NULL)
{
FatalError("out of space!!!");
}
else
{
T->Element = X;
T->Height = 0;
T->Left = T->Right = NULL;
}
}
//X小于根节点的数据
else if (X < T->Element)
{
T->Left = Insert(X, T->Left);
if (Height(T->Left) - Height(T->Right) == 2)
{
if (X < T->Left->Element)
{
T = SingleRoateWithLeft(T);
}
else
T = DoubleRoateWithLeft(T);
}
}
//X大于根节点数据
else if (X > T->Element)
{
T->Right = Insert(X, T->Right);
if (Height(T->Right)- Height(T->Left) == 2)
{
if (X > T->Right->Element)
{
T = SingleRoateWithRight(T);
}
else
{
T = DoubleRoateWithRight(T);
}
}
}
//X等于根节点的数据,什么也不用做
T->Height = max(Height(T->Left), Height(T->Right)) + 1;
return T;
}
ElementType Retrieve(Position P)
{
return P->Element;
}
AvlTree Delete(ElementType X, AvlTree T)
{
}
void Inorder(AvlTree T)
{
if (T == NULL)
{
Error("Empty Tree\n");
}
if (T ->Left != NULL)
{
Inorder(T->Left);
}
printf("%d\t", T->Element);
if (T->Right)
{
Inorder(T->Right);
}
printf("\n");
}
3.testavl.c
#include "avl.h"
#include "fatal.h"
#include <stdio.h>
#include <stdlib.h>
void main()
{
AvlTree T = NULL;
T = MakeEmpty(T);
for (int i = 0; i < 10; i++)
{
T = Insert(i, T);
}
Inorder(T);
printf("Max = %d\n", Retrieve(FindMax(T)));
printf("Min = %d\n", Retrieve(FindMin(T)));
for (int i = 0; i < 10; i++)
{
if (Find(i,T) == NULL)
{
FatalError("Find error\n");
}
}
system("pause");
}
4. 参考资源
http://blog.csdn.net/hguisu/article/details/7686515
http://blog.csdn.net/zealot_2002/article/details/8244436

浙公网安备 33010602011771号