第三篇:爬虫框架 - Scrapy

 前言

       Python提供了一个比较实用的爬虫框架 - Scrapy。在这个框架下只要定制好指定的几个模块,就能实现一个爬虫。

       本文将讲解Scrapy框架的基本体系结构,以及使用这个框架定制爬虫的具体步骤。

Scrapy体系结构

       

       其具体执行流程如下:

       1. 任务管理器Scheduler将初始下载任务递交给下载器Downloader;
       2. 下载器Downloader将下载好了的页面传递给爬取分析器Spiders进行分析。

       爬取分析器分析的结果分为两种:

       a) 本次爬取所得数据 -> 它将传递给任务管理器Scheduler;
       b) 需要进行下一级爬取的URL地址 -> 它将传递给数据管道进行相关的保存工作。

基于Scrapy框架的豆瓣网电影信息爬取器

       1. 执行以下命令创建一个新的工程:

1 scrapy startproject doubanMovieSpider

doubanMovieSpider是工程名,工程包里将会有如下这些文件:

1) scrapy.cfg: 项目配置文件
2) items.py: 需要提取的数据结构定义文件
3) pipelines.py:管道定义,用来对items里面提取的数据做进一步处理,如保存等
4) settings.py: 爬虫配置文件
5) spiders: 放置spider的目录

该工程用于从豆瓣网爬取电影信息(如电影名,评分等等)。

       2. 定义爬取结果数据结构Item --- 在items.py中编写如下代码:

 1 # -*- coding: utf-8 -*-
 2 # ================================================
 3 #  作者: 方萌
 4 #  创建时间: 20**/**/**
 5 #  版本号: 1.0
 6 #  联系方式: 1505033833@qq.com
 7 # ================================================
 8 # scrapy框架模块
 9 import scrapy
10 class DoubanmoviespiderItem(scrapy.Item):
11     # 主题
12     title = scrapy.Field()
13     # 评分
14     rate = scrapy.Field()
15     # ID
16     id = scrapy.Field()

       Item其实从本质来说,就是Scrapy框架自己实现的字典,需要继承scrapy.Item类。上述代码定义的字典表示要爬取的电影信息有:电影主题,电影评分,以及电影ID。

       3. 实现爬取分析器Spider --- 在spiders目录下增加一个python文件MovieSpider.py:

       

       在这个文件中自定义一个爬取分析器,该分析器为一个继承自scrapy.spider.BaseSpider(或者Scrapy框架下其他抽象爬取器)的类,它起码要实现以下几个字段:

1) name:spider的标识
2) start_urls:起始爬取URL
3) parse():爬取对象解析函数

实现代码如下:

 1 # -*- coding: utf-8 -*-
 2 # ================================================
 3 #  作者: 方萌
 4 #  创建时间: 20**/**/**
 5 #  版本号: 1.0
 6 #  联系方式: 1505033833@qq.com
 7 # ================================================
 8 # scrapy框架模块
 9 import scrapy
10 # json解析模块
11 import json
12 # 系统模块
13 import sys
14 # items模块
15 import doubanMovieSpider.items
16 # 爬虫类
17 class MovieSpider(scrapy.spider.BaseSpider):
18     # 爬虫名
19     name = "douban"
20     # 域名限定
21     allowed_domains = ["www.douban.com"]
22     # 爬取URL队列
23     start_urls = [
24         "http://movie.douban.com/j/serch_subjects?type=movie&tag=%E7%83%AD%E9%97%A8&sort=recommend&page_limit=200&page_start=0"
25     ]
26     def parse(self, response):
27         """
28             函数功能:
29                 解析爬取到的数据
30             输入:
31                 response -> 爬取返回数据对象
32             输出:
33 34         """
35         # 将爬取到的电影信息存入json容器
36         json_container = json.loads(response.body)
37         # 构建items。该模块具体含义请查询相关文档。
38         items = []
39         for movie_elem in json_container['subjects']:
40             item = doubanMovieSpider.items.DoubanmoviespiderItem()
41             for key in movie_elem:
42                 if key == 'title':
43                     item['title'] = movie_elem[key]
44                     print movie_elem[key]
45                 if key == 'rate':
46                     item['rate'] = movie_elem[key]
47                 if key == 'id':
48                     item['id'] = movie_elem[key]
49                     items.append(item)
50         # 返回items
51         return items

       4. 实现PipeLine --- 修改items.py文件:

 1 # -*- coding: utf-8 -*-
 2 # Define your item pipelines here
 3 #
 4 # Don't forget to add your pipeline to the ITEM_PIPELINES setting
 5 # See: http://doc.scrapy.org/en/latest/topics/item-pipeline.html
 6 class DoubanmoviespiderPipeline(object):
 7     def __init__(self):
 8         pass
 9     def process_item(self, item, spider):
10         pass

       PipeLine用来对Spider返回的Item列表进行保存操作,可以写入到文件、或者数据库等。

       我们可以在其中的__init__方法内编写打开文件部分代码,在process_item方法内编写具体的写入函数(可直接将数据写入进远程数据库);也可以不实现这个模块,scrapy会有其默认的写入机制(本系统采用默认写入机制)

       5. 在项目当前目录下执行如下命令即可启动此爬虫系统:

1 scrapy crawl douban -o items.json -t json

       该命令表示启动爬取分析器“douban”,并将爬取到的items以json格式保存到items.json文件中。“douban” 即是在爬取分析器中由name域指定的。

       下图为爬取到的结果:

       

小结

       本文仅仅给出Scrapy框架的基本使用。如果要实现生产级别的项目,还需对该框架内的一些具体设置,各种抽象爬取分析器进行深入研究。

posted @ 2017-05-20 17:30  穆晨  阅读(1002)  评论(0编辑  收藏  举报