描写叙述:
Given an array of n integers where n > 1, nums,
return an array output such that output[i] is
equal to the product of all the elements ofnums except nums[i].
Solve it without division and in O(n).
For example, given [1,2,3,4], return [24,12,8,6].
Follow up:
Could you solve it with constant space complexity?
(Note: The output array does not count as extra space for the purpose of space complexity analysis.)
思路:
1.该题目的要求返回一个数组,该数组的product[i]=num[0]*num[1]*.....num[i-1]*num[i+1]*...*num[num.length-1];
2.因为要求出除i位置的元素num[i]的其他全部元素的乘积。假如每次都这么循环遍历一次并作乘法运算,当到num[i]的时候跳过,这样时间复杂度就是O(n*n)
3.第二种思路就是求出全部的元素的乘积productTotal。然后详细求某个product[i]时。直接product[i]=productTotal/num[i]
4.但3中的思路有一个问题,就是productTotal有可能溢出。为处理这样的情况,将productTotal初始化为long类型,OK!
代码:
public int[] productExceptSelf(int[] nums)
{
if (nums == null || nums.length == 0)
return nums;
long result = 1;
for (int num : nums)
result *= num;
if(result!=0)
{
for (int i = 0; i < nums.length; i++)
nums[i] = (int) (result / nums[i]);
}else
{
int newArr[]=new int[nums.length];
newArr=Arrays.copyOf(nums, nums.length);
for (int i = 0; i < nums.length; i++)
{
if(newArr[i]!=0)
nums[i]=0;
else
{
int tempProduct=1;
for(int j=0;j<nums.length;j++)
{
if(j==i)
continue;
else
tempProduct*=newArr[j];
}
nums[i]=tempProduct;
}
}
}
return nums;
}
浙公网安备 33010602011771号