Spark机器学习(10):ALS交替最小二乘算法

1. Alternating Least Square

ALS(Alternating Least Square),交替最小二乘法。在机器学习中,特指使用最小二乘法的一种协同推荐算法。如下图所示,u表示用户,v表示商品,用户给商品打分,但是并不是每一个用户都会给每一种商品打分。比如用户u6就没有给商品v3打分,需要我们推断出来,这就是机器学习的任务。

由于并不是每个用户给每种商品都打了分,可以假设ALS矩阵是低秩的,即一个m*n的矩阵,是由m*k和k*n两个矩阵相乘得到的,其中k<<m,n。

Am×n=Um×k×Vk×n

这种假设是合理的,因为用户和商品都包含了一些低维度的隐藏特征,比如我们只要知道某个人喜欢碳酸饮料,就可以推断出他喜欢百世可乐、可口可乐、芬达,而不需要明确指出他喜欢这三种饮料。这里的碳酸饮料就相当于一个隐藏特征。上面的公式中,Um×k表示用户对隐藏特征的偏好,Vk×n表示产品包含隐藏特征的程度。机器学习的任务就是求出Um×k和Vk×n。可知uiTvj是用户i对商品j的偏好,使用Frobenius范数来量化重构U和V产生的误差。由于矩阵中很多地方都是空白的,即用户没有对商品打分,对于这种情况我们就不用计算未知元了,只计算观察到的(用户,商品)集合R。

这样就将协同推荐问题转换成了一个优化问题。目标函数中U和V相互耦合,这就需要使用交替二乘算法。即先假设U的初始值U(0),这样就将问题转化成了一个最小二乘问题,可以根据U(0)可以计算出V(0),再根据V(0)计算出U(1),这样迭代下去,直到迭代了一定的次数,或者收敛为止。虽然不能保证收敛的全局最优解,但是影响不大。

2. MLlib的ALS实现

MLlib的ALS采用了数据分区结构,即将U分解成u1,u2,u3,...um,V分解成v1,v2,v3,...vn,相关的u和v存放在同一个分区,从而减少分区间数据交换的成本。比如通过U计算V时,存储u的分区是P1,P2...,存储v的分区是Q1,Q2...,需要将不同的u发送给不同的Q,存放这个关系的块称作OutBlock;在P中,计算v时需要哪些u,存放这个关系的块称作InBlock。

比如R中有a12,a13,a15,u1存放在P1,v2,v3存放在Q2,v5存放在Q3,则需要将P1中的u1发送给Q2和Q3,这个信息存储在OutBlock;R中有a12,a32,因此计算v2需要u1和u3,这个信息存储在InBlock。

直接上代码:

import org.apache.log4j.{ Level, Logger }
import org.apache.spark.{ SparkConf, SparkContext }
import org.apache.spark.mllib.recommendation.ALS
import org.apache.spark.mllib.recommendation.Rating

/**
  * Created by Administrator on 2017/7/19.
  */
object ALSTest01 {

  def main(args:Array[String]) ={
    // 设置运行环境
    val conf = new SparkConf().setAppName("ALS 01")
      .setMaster("spark://master:7077").setJars(Seq("E:\\Intellij\\Projects\\MachineLearning\\MachineLearning.jar"))
    val sc = new SparkContext(conf)
    Logger.getRootLogger.setLevel(Level.WARN)

    // 读取样本数据并解析
    val dataRDD = sc.textFile("hdfs://master:9000/ml/data/test.data")
    val ratingRDD = dataRDD.map(_.split(',') match {
      case Array(user, item, rate) =>
        Rating(user.toInt, item.toInt, rate.toDouble)
    })

    // 拆分成训练集和测试集
    val dataParts = ratingRDD.randomSplit(Array(0.8, 0.2))
    val trainingRDD = dataParts(0)
    val testRDD = dataParts(1)

    // 建立ALS交替最小二乘算法模型并训练
    val rank = 10
    val numIterations = 10
    val alsModel = ALS.train(trainingRDD, rank, numIterations, 0.01)

    // 预测
    val user_product = trainingRDD.map {
      case Rating(user, product, rate) =>
        (user, product)
    }
    val predictions =
      alsModel.predict(user_product).map {
        case Rating(user, product, rate) =>
          ((user, product), rate)
      }

    val ratesAndPredictions = trainingRDD.map {
      case Rating(user, product, rate) =>
        ((user, product), rate)
    }.join(predictions)

    val MSE = ratesAndPredictions.map {
      case ((user, product), (r1, r2)) =>
        val err = (r1 - r2)
        err * err
    }.mean()

    println("Mean Squared Error = " + MSE)

    println("User" + "\t" + "Products" + "\t" + "Rate" + "\t" + "Prediction")
    ratesAndPredictions.collect.foreach(
      rating => {
        println(rating._1._1 + "\t" + rating._1._2 + "\t" + rating._2._1 + "\t" + rating._2._2)
      }
    )

  }

}

其中ALS.train()函数的4个参数分别是训练用的数据集,特征数量,迭代次数,和正则因子。

运行结果:

可见,预测结果还是非常准确的。 

posted @ 2017-07-19 23:09  MSTK  阅读(18778)  评论(4编辑  收藏  举报