实验二
1、实验任务一
源代码:
#include "T.h" #include <iostream> #include <string> // 类T实现 // static成员数据类外初始化 const std::string T::doc{"a simple class sample"}; const int T::max_cnt = 999; int T::cnt = 0; // 类方法 int T::get_cnt() { return cnt; } // 对象方法 T::T(int x, int y): m1{x}, m2{y} { ++cnt; std::cout << "T constructor called.\n"; } T::T(const T &t): m1{t.m1}, m2{t.m2} { ++cnt; std::cout << "T copy constructor called.\n"; } T::T(T &&t): m1{t.m1}, m2{t.m2} { ++cnt; std::cout << "T move constructor called.\n"; } T::~T() { --cnt; std::cout << "T destructor called.\n"; } void T::adjust(int ratio) { m1 *= ratio; m2 *= ratio; } void T::display() const { std::cout << "(" << m1 << ", " << m2 << ")" ; } // 普通函数实现 void func() { T t5(42); t5.m2 = 2049; std::cout << "t5 = "; t5.display(); std::cout << '\n'; }
#pragma once #include <string> // 类T: 声明 class T { // 对象属性、方法 public: T(int x = 0, int y = 0); // 普通构造函数 T(const T &t); // 复制构造函数 T(T &&t); // 移动构造函数 ~T(); // 析构函数 void adjust(int ratio); // 按系数成倍调整数据 void display() const; // 以(m1, m2)形式显示T类对象信息 private: int m1, m2; // 类属性、方法 public: static int get_cnt(); // 显示当前T类对象总数 public: static const std::string doc; // 类T的描述信息 static const int max_cnt; // 类T对象上限 private: static int cnt; // 当前T类对象数目 // 类T友元函数声明 friend void func(); }; // 普通函数声明 void func();
#include "T.h" #include <iostream> void test_T(); int main() { std::cout << "test Class T: \n"; test_T(); std::cout << "\ntest friend func: \n"; func(); } void test_T() { using std::cout; using std::endl; cout << "T info: " << T::doc << endl; cout << "T objects'max count: " << T::max_cnt << endl; cout << "T objects'current count: " << T::get_cnt() << endl << endl; T t1; cout << "t1 = "; t1.display(); cout << endl; T t2(3, 4); cout << "t2 = "; t2.display(); cout << endl; T t3(t2); t3.adjust(2); cout << "t3 = "; t3.display(); cout << endl; T t4(std::move(t2)); cout << "t4 = "; t4.display(); cout << endl; cout << "test: T objects'current count: " << T::get_cnt() << endl; }
测试结果:

问题一:T.h中,在类T内部,已声明 func 是T的友元函数。在类外部,去掉line36,重新编译,程序能否正常运行。如果能,回答YES;如果不能,以截图形式提供编译报错信息,说明原因。

答:

不能正常运行,因为在类内友元声明只是声明这个函数是T的友元函数,函数本身没声明。
问题二:T.h中,line9-12给出了各种构造函数、析构函数。总结它们各自的功能、调用时机。

答:(1)普通构造函数:初始化m1与m2的值,如果没有输入参数则m1=m2=0,如果输入一个参数则m1为输入的参数,m2=0,如果输入两个参数,则m1,m2分别对应输入的参数;直接定义时调用;
(2)复制构造函数:用已有的对象初始化新对象;左赋值时调用;
(3)移动构造函数:用右值对象初始化新对象;右赋值时使用;
(4)析构函数:释放对象资源;对象生命周期结束时调用。

答:

静态成员函数的定义必须只在一个源文件中实现,头文件 T.h 里定义了静态数据成员,这个头又被多个.cpp 同时包含,导致链接时重复定义,出现冲突。
2、实验任务二
源代码:
#include <string> class Complex { public: Complex(float x = 0, float y = 0); Complex(Complex &t); ~Complex(); float get_real() const; float get_imag() const; void add(Complex t); static std::string doc; private: float real, imag; friend void output(const Complex &t); friend float abs(Complex t); friend Complex add(Complex t1, Complex t2); friend bool is_equal(Complex t1, Complex t2); friend bool is_not_equal(Complex t1, Complex t2); };
#include "Complex.h" #include <iostream> #include <cmath> std::string Complex::doc = "A simplified Complex class"; Complex::Complex(float x, float y) : real(x), imag(y) {} Complex::Complex(Complex &t) : real(t.real), imag(t.imag) {} Complex::~Complex() = default; float Complex::get_real() const { return real; } float Complex::get_imag() const { return imag; } void Complex::add(Complex t) { real += t.real; imag += t.imag; } void output(const Complex &t) { std::cout << t.real << (t.imag >= 0 ? "+" : "") << t.imag << "i"; } float abs(Complex t) { return std::sqrt(t.real * t.real + t.imag * t.imag); } Complex add(Complex t1, Complex t2) { Complex tmp(t1.real + t2.real, t1.imag + t2.imag); return tmp; } bool is_equal(Complex t1, Complex t2) { return t1.real == t2.real && t1.imag == t2.imag; } bool is_not_equal(Complex t1, Complex t2) { return !is_equal(t1, t2); }
#include "Complex.h" #include <iostream> #include <iomanip> #include <complex> void test_Complex(); void test_std_complex(); int main() { std::cout << "*******测试1: 自定义类Complex*******\n"; test_Complex(); std::cout << "\n*******测试2: 标准库模板类complex*******\n"; test_std_complex(); } void test_Complex() { using std::boolalpha; using std::cout; using std::endl; cout << "类成员测试: " << endl; cout << Complex::doc << endl << endl; cout << "Complex对象测试: " << endl; Complex c1; Complex c2(3, -4); Complex c3(c2); Complex c4 = c2; const Complex c5(3.5); cout << "c1 = "; output(c1); cout << endl; cout << "c2 = "; output(c2); cout << endl; cout << "c3 = "; output(c3); cout << endl; cout << "c4 = "; output(c4); cout << endl; cout << "c5.real = " << c5.get_real() << ", c5.imag = " << c5.get_imag() << endl << endl; cout << "复数运算测试: " << endl; cout << "abs(c2) = " << abs(c2) << endl; c1.add(c2); cout << "c1 += c2, c1 = "; output(c1); cout << endl; cout << boolalpha; cout << "c1 == c2 : " << is_equal(c1, c2) << endl; cout << "c1 != c2 : " << is_not_equal(c1, c2) << endl; c4 = add(c2, c3); cout << "c4 = c2 + c3, c4 = "; output(c4); cout << endl; } void test_std_complex() { using std::boolalpha; using std::cout; using std::endl; cout << "std::complex<double>对象测试: " << endl; std::complex<double> c1; std::complex<double> c2(3, -4); std::complex<double> c3(c2); std::complex<double> c4 = c2; const std::complex<double> c5(3.5); cout << "c1 = " << c1 << endl; cout << "c2 = " << c2 << endl; cout << "c3 = " << c3 << endl; cout << "c4 = " << c4 << endl; cout << "c5.real = " << c5.real() << ", c5.imag = " << c5.imag() << endl << endl; cout << "复数运算测试: " << endl; cout << "abs(c2) = " << abs(c2) << endl; c1 += c2; cout << "c1 += c2, c1 = " << c1 << endl; cout << boolalpha; cout << "c1 == c2 : " << (c1 == c2) << endl; cout << "c1 != c2 : " << (c1 != c2) << endl; c4 = c2 + c3; cout << "c4 = c2 + c3, c4 = " << c4 << endl; }
实验结果:


问题一:比较自定义类Complex和标准库模板类complex的用法,在使用形式上,哪一种更简洁?函数和运算内在有关联吗?
答:标准库模板类更简洁,有关联。
问题二:
#pragma once #include <string> enum class ControlType { Play, Pause, Next, Prev, Stop, Unknown }; class PlayerControl { public: PlayerControl(); ControlType parse(const std::string& control_str); void execute(ControlType cmd) const; static int get_cnt(); private: static int total_cnt; };
#include "PlayerControl.h" #include <iostream> #include <algorithm> int PlayerControl::total_cnt = 0; PlayerControl::PlayerControl() {} ControlType PlayerControl::parse(const std::string& control_str) { std::string s; for (auto c : control_str) s += std::tolower(c); if (s == "play") { total_cnt++; return ControlType::Play; } else if (s == "pause") { total_cnt++; return ControlType::Pause; } else if (s == "next") { total_cnt++; return ControlType::Next; } else if (s == "prev") { total_cnt++; return ControlType::Prev; } else if (s == "stop") { total_cnt++; return ControlType::Stop; } else { return ControlType::Unknown; } } void PlayerControl::execute(ControlType cmd) const { switch (cmd) { case ControlType::Play: std::cout << "[play] Playing music...\n"; break; case ControlType::Pause: std::cout << "[Pause] Music paused\n"; break; case ControlType::Next: std::cout << "[Next] Skipping to next track\n"; break; case ControlType::Prev: std::cout << "[Prev] Back to previous track\n"; break; case ControlType::Stop: std::cout << "[Stop] Music stopped\n"; break; default: std::cout << "[Error] unknown control\n"; break; } } int PlayerControl::get_cnt() { return total_cnt; }
#include "PlayerControl.h" #include <iostream> void test() { PlayerControl controller; std::string control_str; std::cout << "Enter Control: (play/pause/next/prev/stop/quit):\n"; while (std::cin >> control_str) { if (control_str == "quit") break; ControlType cmd = controller.parse(control_str); controller.execute(cmd); std::cout << "Current Player control: " << PlayerControl::get_cnt() << "\n\n"; } } int main() { test(); }
实验结果:

4、实验任务四
源代码:
#pragma once #include<string.h> #include<iostream> class Fraction { public: static const std::string doc; Fraction(int u = 0, int d = 1); Fraction(const Fraction& f); int get_up() const; int get_down() const; Fraction negative() const; private: int up, down; friend void output(const Fraction &f); friend Fraction add(const Fraction &f1,const Fraction &f2); friend Fraction sub(const Fraction& f1, const Fraction& f2); friend Fraction mul(const Fraction& f1, const Fraction& f2); friend Fraction div(const Fraction& f1, const Fraction& f2); }; void output(const Fraction &f); Fraction add(const Fraction& f1, const Fraction& f2); Fraction sub(const Fraction& f1, const Fraction& f2); Fraction mul(const Fraction& f1, const Fraction& f2); Fraction div(const Fraction& f1, const Fraction& f2); int gcd(int a, int b);
#include "Fraction.h" #include<iostream> #include<cmath> //类说明 const std::string Fraction::doc{ "Fraction类 v 0.01版. 目前仅支持分数对象的构造、输出、加 / 减 / 乘 / 除运算" }; //构造函数 Fraction::Fraction(int u, int d) { //约分 //计算最大公约数 int g = gcd(abs(u), abs(d)); u /= g; d /= g; //把符号体现在分子上 if (d < 0) { down = -d; up = -u; } else { down = d; up = u; } } Fraction::Fraction(const Fraction& f) :up{ f.up }, down{ f.down } {} //公有函数实现 int Fraction::get_up() const { return abs(up); } int Fraction::get_down() const { return abs(down); } Fraction Fraction::negative() const { Fraction f(-up, down); return f; } //求最大公约数函数 int gcd(int a, int b) { while (b != 0) { int temp = b; b = a % b; a = temp; } return a; } void output(const Fraction& f) { //分子或分母为0 if (f.up * f.down == 0) { if (f.down == 0) { std::cout << "分母不能为0"; } else { std::cout << 0; } } //分子分母不为0 else { //计算最大公约数 int g = gcd(abs(f.up), abs(f.down)); int new_up = f.up / g; int new_down = f.down / g; //整除 if (new_up % new_down == 0) { std::cout << new_up / new_down; } //不整除 else { //符号为正 if (new_up > 0) { std::cout << abs(new_up) << '/' << abs(new_down); } //符号为负 else { std::cout << '-' << abs(new_up) << '/' << abs(new_down); } } } } Fraction add(const Fraction& f1, const Fraction& f2) { int new_up = f1.up * f2.down + f2.up * f1.down; int new_down = f1.down * f2.down; //计算最大公约数 int g = gcd(abs(new_up), abs(new_down)); new_up /= g; new_down /= g; Fraction f(new_up, new_down); return f; } Fraction sub(const Fraction& f1, const Fraction& f2) { int new_up = f1.up * f2.down - f2.up * f1.down; int new_down = f1.down * f2.down; //计算最大公约数 int g = gcd(abs(new_up), abs(new_down)); new_up /= g; new_down /= g; Fraction f(new_up, new_down); return f; } Fraction mul(const Fraction& f1, const Fraction& f2) { int new_up = f1.up * f2.up; int new_down = f1.down * f2.down; //计算最大公约数 int g = gcd(abs(new_up), abs(new_down)); new_up /= g; new_down /= g; Fraction f(new_up, new_down); return f; } Fraction div(const Fraction& f1, const Fraction& f2) { int new_up = f1.up * f2.down; int new_down = f1.down * f2.up; //计算最大公约数 int g = gcd(abs(new_up), abs(new_down)); new_up /= g; new_down /= g; Fraction f(new_up, new_down); return f; }
#include "Fraction.h" #include <iostream> void test1(); void test2(); int main() { std::cout << "测试1: Fraction类基础功能测试\n"; test1(); std::cout << "\n测试2: 分母为0测试: \n"; test2(); } void test1() { using std::cout; using std::endl; cout << "Fraction类测试: " << endl; cout << Fraction::doc << endl << endl; Fraction f1(5); Fraction f2(3, -4), f3(-18, 12); Fraction f4(f3); cout << "f1 = "; output(f1); cout << endl; cout << "f2 = "; output(f2); cout << endl; cout << "f3 = "; output(f3); cout << endl; cout << "f4 = "; output(f4); cout << endl; const Fraction f5(f4.negative()); cout << "f5 = "; output(f5); cout << endl; cout << "f5.get_up() = " << f5.get_up() << ", f5.get_down() = " << f5.get_down() << endl; cout << "f1 + f2 = "; output(add(f1, f2)); cout << endl; cout << "f1 - f2 = "; output(sub(f1, f2)); cout << endl; cout << "f1 * f2 = "; output(mul(f1, f2)); cout << endl; cout << "f1 / f2 = "; output(div(f1, f2)); cout << endl; cout << "f4 + f5 = "; output(add(f4, f5)); cout << endl; } void test2() { using std::cout; using std::endl; Fraction f6(42, 55), f7(0, 3); cout << "f6 = "; output(f6); cout << endl; cout << "f7 = "; output(f7); cout << endl; cout << "f6 / f7 = "; output(div(f6, f7)); cout << endl; }
测试结果:

问题一: 分数的输出和计算, output/add/sub/mul/div ,你选择的是哪一种设计方案?(友元/自由函数/命名空间+自由函数/类+static)你的决策理由?如友元方案的优缺点、静态成员函数方案的适用场景、命名空间方案的考虑因素等。
答:我选择的是友元;static 更适合描述类的共性,比如统计对象数量,但分数的分子分母都是独立的,用不上;自由函数的话,每次都得写 f.get_up () 这类代码,太麻烦;命名空间会削弱封装性,也不好。友元确实有缺点,会破坏封装,类里的属性一改,友元函数都得跟着改,耦合度高,但相比下来,还是友元更合适些。

浙公网安备 33010602011771号