Description
In a modernized warehouse, robots are used to fetch the goods. Careful planning is needed to ensure that the robots reach their destinations without crashing into each other. Of course, all warehouses are rectangular, and all robots occupy a circular floor space with a diameter of 1 meter. Assume there are N robots, numbered from 1 through N. You will get to know the position and orientation of each robot, and all the instructions, which are carefully (and mindlessly) followed by the robots. Instructions are processed in the order they come. No two robots move simultaneously; a robot always completes its move before the next one starts moving.
A robot crashes with a wall if it attempts to move outside the area of the warehouse, and two robots crash with each other if they ever try to occupy the same spot.
A robot crashes with a wall if it attempts to move outside the area of the warehouse, and two robots crash with each other if they ever try to occupy the same spot.
Input
The first line of input is K, the number of test cases. Each test case starts with one line consisting of two integers, 1 <= A, B <= 100, giving the size of the warehouse in meters. A is the length in the EW-direction, and B in the NS-direction.
The second line contains two integers, 1 <= N, M <= 100, denoting the numbers of robots and instructions respectively.
Then follow N lines with two integers, 1 <= Xi <= A, 1 <= Yi <= B and one letter (N, S, E or W), giving the starting position and direction of each robot, in order from 1 through N. No two robots start at the same position.
Figure 1: The starting positions of the robots in the sample warehouse
Finally there are M lines, giving the instructions in sequential order.
An instruction has the following format:
< robot #> < action> < repeat>
Where is one of
and 1 <= < repeat> <= 100 is the number of times the robot should perform this single move.
The second line contains two integers, 1 <= N, M <= 100, denoting the numbers of robots and instructions respectively.
Then follow N lines with two integers, 1 <= Xi <= A, 1 <= Yi <= B and one letter (N, S, E or W), giving the starting position and direction of each robot, in order from 1 through N. No two robots start at the same position.
Figure 1: The starting positions of the robots in the sample warehouse
Finally there are M lines, giving the instructions in sequential order.
An instruction has the following format:
< robot #> < action> < repeat>
Where is one of
- L: turn left 90 degrees,
- R: turn right 90 degrees, or
- F: move forward one meter,
and 1 <= < repeat> <= 100 is the number of times the robot should perform this single move.
Output
Output one line for each test case:
Only the first crash is to be reported.
- Robot i crashes into the wall, if robot i crashes into a wall. (A robot crashes into a wall if Xi = 0, Xi = A + 1, Yi = 0 or Yi = B + 1.)
- Robot i crashes into robot j, if robots i and j crash, and i is the moving robot.
- OK, if no crashing occurs.
Only the first crash is to be reported.
Sample Input
4 5 4 2 2 1 1 E 5 4 W 1 F 7 2 F 7 5 4 2 4 1 1 E 5 4 W 1 F 3 2 F 1 1 L 1 1 F 3 5 4 2 2 1 1 E 5 4 W 1 L 96 1 F 2 5 4 2 3 1 1 E 5 4 W 1 F 4 1 L 1 1 F 20
Sample Output
Robot 1 crashes into the wall Robot 1 crashes into robot 2 OK Robot 1 crashes into robot 2
switch注意break,模拟机器人的走动,每移动一步判断一下
View Code
1 #include <iostream> 2 using namespace std; 3 4 struct Robot 5 { 6 int x,y; 7 char dir; 8 }; 9 Robot robot[100]; 10 11 struct Ins 12 { 13 int n; 14 char ins; 15 int re; 16 }; 17 Ins ins[100]; 18 19 int hei,wid; 20 int n_0,n_1,n_2; 21 22 void check_f(Robot& robot) 23 { 24 switch(robot.dir) 25 { 26 case 'N': robot.y++;break; 27 case 'S': robot.y--;break; 28 case 'W': robot.x--;break; 29 case 'E': robot.x++;break; 30 } 31 } 32 33 void check_l(Robot& robot) 34 { 35 switch(robot.dir) 36 { 37 case 'N': robot.dir='W';break; 38 case 'S': robot.dir='E';break; 39 case 'E': robot.dir='N';break; 40 case 'W': robot.dir='S';break; 41 } 42 } 43 44 void check_r(Robot& robot) 45 { 46 switch(robot.dir) 47 { 48 case 'N': robot.dir='E';break; 49 case 'S': robot.dir='W';break; 50 case 'E': robot.dir='S';break; 51 case 'W': robot.dir='N';break; 52 } 53 } 54 55 int move(Robot* robot,int n_robot,char ins,int rep,int rob_n) 56 { 57 for(int i=0;i<rep;i++) 58 { 59 switch(ins) 60 { 61 case 'F':check_f(robot[n_robot]);break; 62 case 'L':check_l(robot[n_robot]);break; 63 case 'R':check_r(robot[n_robot]);break; 64 } 65 if(robot[n_robot].x<1||robot[n_robot].x>wid||robot[n_robot].y<1||robot[n_robot].y>hei) 66 { 67 n_0=n_robot; 68 return 1; 69 } 70 71 for(int i=0;i<rob_n;i++) 72 { 73 if((i!=n_robot)&&robot[i].x==robot[n_robot].x&&robot[i].y==robot[n_robot].y) 74 { 75 n_1=n_robot; 76 n_2=i; 77 return -1; 78 } 79 } 80 } 81 return 0; 82 } 83 84 int main() 85 { 86 int a; 87 cin>>a; 88 for(int i=0;i<a;i++) 89 { 90 cin>>wid; 91 cin>>hei; 92 93 int rob_n,ins_n; 94 cin>>rob_n; 95 cin>>ins_n; 96 97 for(int i=0;i<rob_n;i++) 98 { 99 cin>>robot[i].x; 100 cin>>robot[i].y; 101 cin>>robot[i].dir; 102 } 103 104 for(int i=0;i<ins_n;i++) 105 { 106 int t; 107 cin>>t; 108 ins[i].n=t-1; 109 cin>>ins[i].ins; 110 cin>>ins[i].re; 111 } 112 113 bool flag=true; 114 for(int i=0;i<ins_n;i++) 115 { 116 switch(move(robot,ins[i].n,ins[i].ins,ins[i].re,rob_n)) 117 { 118 case 1: 119 { 120 cout<<"Robot "<<n_0+1<<" crashes into the wall"<<endl; 121 flag=false; 122 break; 123 } 124 case -1: 125 { 126 cout<<"Robot "<<n_1+1<<" crashes into robot "<<n_2+1<<endl; 127 flag=false; 128 break; 129 } 130 case 0:; 131 } 132 if(flag==false) break; 133 } 134 if(flag==true) cout<<"OK"<<endl; 135 136 } 137 return 0; 138 }

浙公网安备 33010602011771号