uva 12508 - Triangles in the Grid(几何+计数)
题目链接:uva 12508 - Triangles in the Grid
题目大意:给出n,m。A和B。要求计算在(n+1)∗(m+1)的矩阵上。能够找出多少个三角形,面积在AB之间。
解题思路;首先枚举矩阵。然后计算有多少个三角形以该矩阵为外接矩阵。而且要满足体积在AB之间。然后对于每一个矩阵,要确定在大的范围内能够确定几个。
枚举矩阵的内接三角形能够分为三类:
1.三角型的两点在一条矩阵边上的顶点,还有一点在该边的对边上(不包含顶点)
2.以对角线为三角形的一边
3.三角形一点在矩形顶点上,另外两点在相应的边上
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;
inline ll max(ll a, ll b) {
    return a > b ? a : b;
}
inline ll min(ll a, ll b) {
    return a < b ? a : b;
}
ll N, M, A, B;
ll solve (ll k) {
    if (k < 0)
        k = 0;
    if (N > M)
        swap(N, M);
    ll ans = 0;
    for (ll n = 1; n <= N; n++) {
        for (ll m = 1; m <= M; m++) {
            ll cnt = 0;
            if (n * m <= k)
                cnt += 2 * (n + m - 2);
            ll l, r;
            for (ll x = 0; x <= n; x ++) {
                r = (m * x + k) / n;
                if (r > m)
                    r = m;
                ll t = m * x - k;
                if(t <= 0) 
                    l = 0;
                else 
                    l = (t - 1) / n + 1;
                if(l <= r) 
                    cnt += 2 * (r - l + 1);
            }
            for (ll x = 1; x < n; x++) {
                ll tmp = n * m - x;
                if (tmp <= k)
                    cnt += 4 * (m - 1);
                else {
                    tmp = tmp - k;
                    ll u = m-1 - min(tmp / x + (tmp % x != 0), m-1);
                    cnt += 4 * u;
                }
            }
            ans += cnt * (N - n + 1) * (M - m + 1);
        }
    }
    return ans;
}
int main () {
    int cas;
    scanf("%d", &cas);
    while (cas--) {
        scanf("%lld%lld%lld%lld", &N, &M, &A, &B);
        printf("%lld\n", solve(B*2) - solve(A*2-1));
    }
    return 0;
}
 
                     
                    
                 
                    
                
 
                
            
         
         浙公网安备 33010602011771号
浙公网安备 33010602011771号