import torch
import torch.nn as nn
from d2l import torch as d2l
# 定义vgg块
def vgg_block(num, in_channels, out_channels):
layers = []
for i in range(num):
layers.append(nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1))
layers.append(nn.ReLU())
in_channels = out_channels
layers.append(nn.MaxPool2d(kernel_size=2, stride=2))
return nn.Sequential(*layers) # 用*拆成一个个元素
conv_arch = ((1, 64), (1, 128), (2, 256), (2, 512), (2, 512))
# VGG-11
def vgg_11(conv_arch):
conv_blocks = []
in_channels = 1
for (num, out_channels) in conv_arch:
conv_blocks.append(vgg_block(num, in_channels, out_channels))
in_channels = out_channels
return nn.Sequential(*conv_blocks,
nn.Flatten(),
nn.Linear(in_channels * 7 * 7, 4096), nn.ReLU(), nn.Dropout(0.5),
nn.Linear(4096, 4096), nn.ReLU(), nn.Dropout(0.5),
nn.Linear(4096, 10)
)
net = vgg_11(conv_arch)