python 2.10 json + 正则表达式

1. 内置模块

1.1 json

json模块,是python内部的一个模块,可以将python的数据格式 转换为json格式的数据,也可以将json格式的数据转换为python的数据格式。

json格式,是一个数据格式(本质上就是个字符串,常用语网络数据传输)

# Python中的数据类型的格式
data = [
    {"id": 1, "name": "武沛齐", "age": 18},
    {"id": 2, "name": "alex", "age": 18},
    ('wupeiqi',123),
]

# JSON格式
value = '[{"id": 1, "name": "武沛齐", "age": 18}, {"id": 2, "name": "alex", "age": 18},["wupeiqi",123]]'


1.1.1 核心功能

json格式的作用?

跨语言数据传输,例如:
	A系统用Python开发,有列表类型和字典类型等。
	B系统用Java开发,有数组、map等的类型。

	语言不同,基础数据类型格式都不同。
	
	为了方便数据传输,大家约定一个格式:json格式,每种语言都是将自己数据类型转换为json格式,也可以将json格式的数据转换为自己的数据类型。

Python数据类型与json格式的相互转换:

  • 数据类型 -> json ,一般称为:序列化

    import json
    
    data = [
        {"id": 1, "name": "武沛齐", "age": 18},
        {"id": 2, "name": "alex", "age": 18},
    ]
    
    res = json.dumps(data)
    print(res) # '[{"id": 1, "name": "\u6b66\u6c9b\u9f50", "age": 18}, {"id": 2, "name": "alex", "age": 18}]'
    
    res = json.dumps(data, ensure_ascii=False)
    print(res) # '[{"id": 1, "name": "武沛齐", "age": 18}, {"id": 2, "name": "alex", "age": 18}]'
    
  • json格式 -> 数据类型,一般称为:反序列化

    import json
    
    data_string = '[{"id": 1, "name": "武沛齐", "age": 18}, {"id": 2, "name": "alex", "age": 18}]'
    
    data_list = json.loads(data_string)
    
    print(data_list)
    

练习题

  1. 写网站,给用户返回json格式数据

    • 安装flask模块,协助我们快速写网站(之前已安装过)

      pip3 install flask
      
    • 使用flask写网站

      import json
      from flask import Flask
      
      app = Flask(__name__)
      
      
      def index():
          return "首页"
      
      
      def users():
          data = [
              {"id": 1, "name": "武沛齐", "age": 18},
              {"id": 2, "name": "alex", "age": 18},
          ]
          return json.dumps(data)
      
      
      app.add_url_rule('/index/', view_func=index, endpoint='index')
      app.add_url_rule('/users/', view_func=users, endpoint='users')
      
      if __name__ == '__main__':
          app.run()
      
  2. 发送网络请求,获取json格式数据并处理。

    import json
    import requests
    
    url = "https://movie.douban.com/j/search_subjects?type=movie&tag=%E7%83%AD%E9%97%A8&sort=recommend&page_limit=5&page_start=20"
    
    res = requests.get(
        url=url,
        headers={
            "User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.88 Safari/537.36"
        }
    )
    
    # json格式
    print(res.text)
    
    # json格式转换为python数据类型
    data_dict = json.loads(res.text)
    print(data_dict)
    

1.1.2 类型要求

python的数据类型转换为 json 格式,对数据类型是有要求的,默认只支持:

    +-------------------+---------------+
    | Python            | JSON          |
    +===================+===============+
    | dict              | object        |
    +-------------------+---------------+
    | list, tuple       | array         |
    +-------------------+---------------+
    | str               | string        |
    +-------------------+---------------+
    | int, float        | number        |
    +-------------------+---------------+
    | True              | true          |
    +-------------------+---------------+
    | False             | false         |
    +-------------------+---------------+
    | None              | null          |
    +-------------------+---------------+
data = [
    {"id": 1, "name": "武沛齐", "age": 18},
    {"id": 2, "name": "alex", "age": 18},
]

其他类型如果想要支持,需要自定义JSONEncoder 才能实现【目前只需要了解大概意思即可,以后项目开发中用到了还会讲解。】,例如:

import json
from decimal import Decimal
from datetime import datetime

data = [
    {"id": 1, "name": "武沛齐", "age": 18, 'size': Decimal("18.99"), 'ctime': datetime.now()},
    {"id": 2, "name": "alex", "age": 18, 'size': Decimal("9.99"), 'ctime': datetime.now()},
]


class MyJSONEncoder(json.JSONEncoder):
    def default(self, o):
        if type(o) == Decimal:
            return str(o)
        elif type(o) == datetime:
            return o.strftime("%Y-%M-%d")
        return super().default(o)


res = json.dumps(data, cls=MyJSONEncoder)
print(res)

1.1.3 其他功能

json模块中常用的是:

  • json.dumps,序列化生成一个字符串。

  • json.loads,发序列化生成python数据类型。

  • json.dump,将数据序列化并写入文件(不常用)

    import json
    
    data = [
        {"id": 1, "name": "武沛齐", "age": 18},
        {"id": 2, "name": "alex", "age": 18},
    ]
    
    file_object = open('xxx.json', mode='w', encoding='utf-8')
    
    json.dump(data, file_object)
    
    file_object.close()
    
  • json.load,读取文件中的数据并反序列化为python的数据类型(不常用)

    import json
    
    file_object = open('xxx.json', mode='r', encoding='utf-8')
    
    data = json.load(file_object)
    print(data)
    
    file_object.close()
    

1.3 正则表达式相关

当给你一大堆文本信息,让你提取其中的指定数据时,可以使用正则来实现。例如:提取文本中的邮箱和手机号

import re

text = "楼主太牛逼了,在线想要 442662578@qq.com和xxxxx@live.com谢谢楼主,手机号也可15131255789,搞起来呀"

phone_list = re.findall("1[3|5|8|9]\d{9}", text)
print(phone_list)

1.3.1 正则表达式

1. 字符相关
  • wupeiqi 匹配文本中的wupeiqi

    import re
    
    text = "你好wupeiqi,阿斯顿发wupeiqasd 阿士大夫能接受的wupeiqiff"
    data_list = re.findall("wupeiqi", text)
    print(data_list) # ['wupeiqi', 'wupeiqi'] 可用于计算字符串中某个字符出现的次数
    
  • [abc] 匹配a或b或c 字符。

    import re
    
    text = "你2b好wupeiqi,阿斯顿发awupeiqasd 阿士大夫a能接受的wffbbupqaceiqiff"
    data_list = re.findall("[abc]", text)
    print(data_list) # ['b', 'a', 'a', 'a', 'b', 'b', 'c']
    
    import re
    
    text = "你2b好wupeiqi,阿斯顿发awupeiqasd 阿士大夫a能接受的wffbbupqcceiqiff"
    data_list = re.findall("q[abc]", text)
    print(data_list) # ['qa', 'qc']
    
  • [^abc] 匹配除了abc意外的其他字符。

    import re
    
    text = "你wffbbupceiqiff"
    data_list = re.findall("[^abc]", text)
    print(data_list)  # ['你', 'w', 'f', 'f', 'u', 'p', 'e', 'i', 'q', 'i', 'f', 'f']
    
  • [a-z] 匹配a~z的任意字符( [0-9]也可以 )。

    import re
    
    text = "alexrootrootadmin"
    data_list = re.findall("t[a-z]", text)
    print(data_list)  # ['tr', 'ta']
    
  • . 代指除换行符以外的任意字符。

    import re
    
    text = "alexraotrootadmin"
    data_list = re.findall("r.o", text)
    print(data_list) # ['rao', 'roo']
    
    import re
    
    text = "alexraotrootadmin"
    data_list = re.findall("r.+o", text) # 贪婪匹配
    print(data_list) # ['raotroo']
    
    import re
    
    text = "alexraotrootadmin"
    data_list = re.findall("r.+?o", text) # 非贪婪匹配
    print(data_list) # ['rao']
    
  • \w 代指字母或数字或下划线(汉字)。

    import re
    
    text = "北京武沛alex齐北  京武沛alex齐"
    data_list = re.findall("武\w+x", text)
    print(data_list) # ['武沛alex', '武沛alex']
    
  • \d 代指数字

    import re
    
    text = "root-ad32min-add3-admd1in"
    data_list = re.findall("d\d", text)
    print(data_list) # ['d3', 'd3', 'd1']
    
    import re
    
    text = "root-ad32min-add3-admd1in"
    data_list = re.findall("d\d+", text)
    print(data_list) # ['d32', 'd3', 'd1']
    
  • \s 代指任意的空白符,包括空格、制表符等。

    import re
    
    text = "root admin add admin"
    data_list = re.findall("a\w+\s\w+", text)
    print(data_list) # ['admin add']
    
2. 数量相关
  • * 重复0次或更多次

    import re
    
    text = "他是大B个,确实是个大2B。"
    data_list = re.findall("大2*B", text)
    print(data_list) # ['大B', '大2B']
    
  • + 重复1次或更多次

    import re
    
    text = "他是大B个,确实是个大2B,大3B,大66666B。"
    data_list = re.findall("大\d+B", text)
    print(data_list) # ['大2B', '大3B', '大66666B']
    
  • ? 重复0次或1次

    import re
    
    text = "他是大B个,确实是个大2B,大3B,大66666B。"
    data_list = re.findall("大\d?B", text)
    print(data_list) # ['大B', '大2B', '大3B']
    
  • {n} 重复n次

    import re
    
    text = "楼主太牛逼了,在线想要 442662578@qq.com和xxxxx@live.com谢谢楼主,手机号也可15131255789,搞起来呀"
    data_list = re.findall("151312\d{5}", text)
    print(data_list) # ['15131255789']
    
  • {n,} 重复n次或更多次

    import re
    
    text = "楼主太牛逼了,在线想要 442662578@qq.com和xxxxx@live.com谢谢楼主,手机号也可15131255789,搞起来呀"
    data_list = re.findall("\d{9,}", text)
    print(data_list) # ['442662578', '15131255789']
    
    
  • {n,m} 重复n到m次

    import re
    
    text = "楼主太牛逼了,在线想要 442662578@qq.com和xxxxx@live.com谢谢楼主,手机号也可15131255789,搞起来呀"
    data_list = re.findall("\d{10,15}", text)
    print(data_list) # ['15131255789']
    
3. 括号(分组)
  • 提取数据区域

    import re
    
    text = "楼主太牛逼了,在线想要 442662578@qq.com和xxxxx@live.com谢谢楼主,手机号也可15131255789,搞起来呀"
    data_list = re.findall("15131(2\d{5})", text)
    print(data_list)  # ['255789']
    
    import re
    
    text = "楼主太牛逼了,在线想要 442662578@qq.com和xxxxx@live.com谢谢楼主,手机号也可15131255789,搞起来15131266666呀"
    data_list = re.findall("15(13)1(2\d{5})", text)
    print(data_list)  # [ ('13', '255789')   ]
    
    import re
    
    text = "楼主太牛逼了,在线想要 442662578@qq.com和xxxxx@live.com谢谢楼主,手机号也可15131255789,搞起来呀"
    data_list = re.findall("(15131(2\d{5}))", text)
    print(data_list)  # [('15131255789', '255789')]
    
  • 获取指定区域 + 或条件

    import re
    
    text = "楼主15131root太牛15131alex逼了,在线想要 442662578@qq.com和xxxxx@live.com谢谢楼主,手机号也可15131255789,搞起来呀"
    data_list = re.findall("15131(2\d{5}|r\w+太)", text)
    print(data_list)  # ['root太', '255789']
    
    import re
    
    text = "楼主15131root太牛15131alex逼了,在线想要 442662578@qq.com和xxxxx@live.com谢谢楼主,手机号也可15131255789,搞起来呀"
    data_list = re.findall("(15131(2\d{5}|r\w+太))", text)
    print(data_list)  # [('15131root太', 'root太'), ('15131255789', '255789')]
    
    练习题
  1. 利用正则匹配QQ号码

    [1-9]\d{4,}
    
  2. 身份证号码

    import re
    
    text = "dsf130429191912015219k13042919591219521Xkk"
    data_list = re.findall("\d{17}[\dX]", text) # [abc]
    print(data_list) # ['130429191912015219', '13042919591219521X']
    
    import re
    
    text = "dsf130429191912015219k13042919591219521Xkk"
    data_list = re.findall("\d{17}(\d|X)", text)
    print(data_list) # ['9', 'X']
    
    import re
    
    text = "dsf130429191912015219k13042919591219521Xkk"
    data_list = re.findall("(\d{17}(\d|X))", text)
    print(data_list) # [('130429191912015219', '9'), ('13042919591219521X', 'X')]
    
    import re
    
    text = "dsf130429191912015219k13042919591219521Xkk"
    data_list = re.findall("(\d{6})(\d{4})(\d{2})(\d{2})(\d{3})([0-9]|X)", text)
    print(data_list) # [('130429', '1919', '12', '01', '521', '9'), ('130429', '1959', '12', '19', '521', 'X')]
    
  3. 手机号

    import re
    
    text = "我的手机哈是15133377892,你的手机号是1171123啊?"
    data_list = re.findall("1[3-9]\d{9}", text)
    print(data_list)  # ['15133377892']
    
  4. 邮箱地址

    import re
    
    text = "楼主太牛逼了,在线想要 442662578@qq.com和xxxxx@live.com谢谢楼主,手机号也可15131255789,搞起来呀"
    email_list = re.findall("\w+@\w+\.\w+",text)
    print(email_list) # ['442662578@qq.com和xxxxx']
    
    import re
    
    text = "楼主太牛逼了,在线想要 442662578@qq.com和xxxxx@live.com谢谢楼主,手机号也可15131255789,搞起来呀"
    email_list = re.findall("[a-zA-Z0-9_-]+@[a-zA-Z0-9_-]+\.[a-zA-Z0-9_-]+", text, re.ASCII)
    print(email_list) # ['442662578@qq.com', 'xxxxx@live.com']
    
    
    import re
    
    text = "楼主太牛逼了,在线想要 442662578@qq.com和xxxxx@live.com谢谢楼主,手机号也可15131255789,搞起来呀"
    email_list = re.findall("\w+@\w+\.\w+", text, re.ASCII)
    print(email_list) # ['442662578@qq.com', 'xxxxx@live.com']
    
    import re
    
    text = "楼主太牛44266-2578@qq.com逼了,在线想要 442662578@qq.com和xxxxx@live.com谢谢楼主,手机号也可15131255789,搞起来呀"
    email_list = re.findall("(\w+([-+.]\w+)*@\w+([-.]\w+)*\.\w+([-.]\w+)*)", text, re.ASCII)
    print(email_list) # [('44266-2578@qq.com', '-2578', '', ''), ('xxxxx@live.com', '', '', '')]
    
  5. 补充代码,实现获取页面上的所有评论(已实现),并提取里面的邮箱。

    # 先安装两个模块
    pip3 install requests
    pip3 install beautifulsoup4
    
    import re
    import requests
    from bs4 import BeautifulSoup
    
    res = requests.get(
        url="https://www.douban.com/group/topic/79870081/",
        headers={
            'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_14_0) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.163 Safari/537.36',
        }
    )
    bs_object = BeautifulSoup(res.text, "html.parser")
    comment_object_list = bs_object.find_all("p", attrs={"class": "reply-content"})
    for comment_object in comment_object_list:
        text = comment_object.text
        print(text)
        # 请继续补充代码,提取text中的邮箱地址
    
    
4. 起始和结束

上述示例中都是去一段文本中提取数据,只要文本中存在即可。

但,如果要求用户输入的内容必须是指定的内容开头和结尾,比就需要用到如下两个字符。

  • ^ 开始
  • $ 结束
import re

text = "啊442662578@qq.com我靠"
email_list = re.findall("^\w+@\w+.\w+$", text, re.ASCII)
print(email_list) # []
import re

text = "442662578@qq.com"
email_list = re.findall("^\w+@\w+.\w+$", text, re.ASCII)
print(email_list) # ['442662578@qq.com']

这种一般用于对用户输入数据格式的校验比较多,例如:

import re

text = input("请输入邮箱:")
email = re.findall("^\w+@\w+.\w+$", text, re.ASCII)
if not email:
    print("邮箱格式错误")
else:
    print(email)
5. 特殊字符

由于正则表达式中 * . \ { } ( ) 等都具有特殊的含义,所以如果想要在正则中匹配这种指定的字符,需要转义,例如:

import re

text = "我是你{5}爸爸"
data = re.findall("你{5}爸", text)
print(data) # []
import re

text = "我是你{5}爸爸"
data = re.findall("你\{5\}爸", text)
print(data)

1.3.2 re模块

python中提供了re模块,可以处理正则表达式并对文本进行处理。

  • findall,获取匹配到的所有数据

    import re
    
    text = "dsf130429191912015219k13042919591219521Xkk"
    data_list = re.findall("(\d{6})(\d{4})(\d{2})(\d{2})(\d{3})([0-9]|X)", text)
    print(data_list) # [('130429', '1919', '12', '01', '521', '9'), ('130429', '1959', '12', '19', '521', 'X')]
    
  • match,从起始位置开始匹配,匹配成功返回一个对象,未匹配成功返回None

    import re
    
    text = "大小逗2B最逗3B欢乐"
    data = re.match("逗\dB", text)
    print(data) # None
    
    import re
    
    text = "逗2B最逗3B欢乐"
    data = re.match("逗\dB", text)
    if data:
        content = data.group() # "逗2B"
        print(content)
    
  • search,浏览整个字符串去匹配第一个,未匹配成功返回None

    import re
    
    text = "大小逗2B最逗3B欢乐"
    data = re.search("逗\dB", text)
    if data:
        print(data.group())  # "逗2B"
    
  • sub,替换匹配成功的位置

    import re
    
    text = "逗2B最逗3B欢乐"
    data = re.sub("\dB", "沙雕", text)
    print(data) # 逗沙雕最逗沙雕欢乐
    
    import re
    
    text = "逗2B最逗3B欢乐"
    data = re.sub("\dB", "沙雕", text, 1)
    print(data) # 逗沙雕最逗3B欢乐
    
  • split,根据匹配成功的位置分割

    import re
    
    text = "逗2B最逗3B欢乐"
    data = re.split("\dB", text)
    print(data) # ['逗', '最逗', '欢乐']
    
    import re
    
    text = "逗2B最逗3B欢乐"
    data = re.split("\dB", text, 1)
    print(data) # ['逗', '最逗3B欢乐']
    
  • finditer

    import re
    
    text = "逗2B最逗3B欢乐"
    data = re.finditer("\dB", text)
    for item in data:
        print(item.group())
    
    import re
    
    text = "逗2B最逗3B欢乐"
    data = re.finditer("(?P<xx>\dB)", text)  # 命名分组
    for item in data:
        print(item.groupdict())
    
    text = "dsf130429191912015219k13042919591219521Xkk"
    data_list = re.finditer("\d{6}(?P<year>\d{4})(?P<month>\d{2})(?P<day>\d{2})\d{3}[\d|X]", text)
    for item in data_list:
        info_dict = item.groupdict()
        print(info_dict)
    
posted @ 2022-01-12 11:26  mmszxc  阅读(76)  评论(0)    收藏  举报