CF763C Timofey and Remoduling
题目戳这里。
这道题目纯粹是考思维。
若\(2N \le M\),由于答案肯定是\(s,s+d,\dots,s+(N-1)d\),我们任意枚举两个数\(a,b\),不妨设\(b\)在数列中出现在\(a\)后面\(k\)位,设\(g = b-a\),则\(g\)这个差在所有数出现刚好\(N-K\)次。我们任取个\(g\),用二分或哈希求个差出现次数,就可以得知\(k\)了,然后\(d = gk^{-1}\)。在检验数列中有\(a\)的公差为\(d\)的等差数列是否存在即可。
若\(2N > M\),我们考虑这些数的补集即可,这样就可以求出\(d\)了。
然后为什么\(2N > M\)不能用第一种情况来做呢?因为\(kd\)这个差不一定出现\(N-k\)次。因为假设我枚举到的差是\((N-1)d\),那么\(s+(2N-2)d\)这个数有可能在模\(M\)意义下是在数列中的,但是这个数字又是不合法的。
程序实现还有一些细节,可以参考一下代码。
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstdlib>
using namespace std;
typedef long long ll;
const int maxn = 100010;
int M,N,A[maxn],B[maxn],ans1,ans2;
inline int gi()
{
char ch; int ret = 0,f = 1;
do ch = getchar(); while (!(ch >= '0'&&ch <= '9')&&ch != '-');
if (ch == '-') f = -1,ch = getchar();
do ret = ret*10+ch-'0',ch = getchar(); while (ch >= '0'&&ch <= '9');
return ret*f;
}
inline ll qsm(ll a,int b)
{
ll ret = 1;
for (;b;b >>= 1,(a *= a) %= M) if (b&1) (ret *= a) %= M;
return ret;
}
inline bool find(int *a,int n,int x) { return a[lower_bound(a+1,a+n+1,x)-a] == x; }
inline void solve(int *a,int n)
{
if (n == 1) { ans1 = a[1],ans2 = 1; return; }
int tmp = a[2]-a[1],cnt = 0,tot = 1;
for (int i = 1;i <= n;++i) cnt += find(a,n,(a[i]+tmp)%M);
ans2 = qsm(n-cnt,M-2)*tmp%M;
for (int now = a[1],nx;;now = nx,++tot)
{
nx = now+ans2; if (nx >= M) nx -= M;
if (!find(a,n,nx)) break;
}
for (int now = a[1],nx;;now = nx,++tot)
{
ans1 = now; nx = now-ans2; if (nx < 0) nx += M;
if (!find(a,n,nx)) break;
}
if (tot != n) ans1 = -1;
}
int main()
{
freopen("763C.in","r",stdin);
freopen("763C.out","w",stdout);
M = gi(); N = gi();
for (int i = 1;i <= N;++i) A[i] = gi();
sort(A+1,A+N+1);
if (N == 1||N == M) printf("%d 1\n",A[1]);
else
{
if (2*N <= M) solve(A,N);
else
{
int n = 0;
for (int i = 0;i < M;++i) if (!find(A,N,i)) B[++n] = i;
solve(B,n);
if (ans1 != -1) { ans1 += (ll)n*ans2%M; if (ans1 >= M) ans1 -= M; }
}
if (ans1 == -1) puts("-1");
else printf("%d %d\n",ans1,ans2);
}
fclose(stdin); fclose(stdout);
return 0;
}
高考结束,重新回归。