P2419 [USACO08JAN]牛大赛Cow Contest

P2419 [USACO08JAN]牛大赛Cow Contest

题目背景

[Usaco2008 Jan]

题目描述

N (1 ≤ N ≤ 100) cows, conveniently numbered 1..N, are participating in a programming contest. As we all know, some cows code better than others. Each cow has a certain constant skill rating that is unique among the competitors.

The contest is conducted in several head-to-head rounds, each between two cows. If cow A has a greater skill level than cow B (1 ≤ A ≤ N; 1 ≤ B ≤ N; A ≠ B), then cow A will always beat cow B.

Farmer John is trying to rank the cows by skill level. Given a list the results of M (1 ≤ M ≤ 4,500) two-cow rounds, determine the number of cows whose ranks can be precisely determined from the results. It is guaranteed that the results of the rounds will not be contradictory.

FJ的N(1 <= N <= 100)头奶牛们最近参加了场程序设计竞赛:)。在赛场上,奶牛们按1..N依次编号。每头奶牛的编程能力不尽相同,并且没有哪两头奶牛的水平不相上下,也就是说,奶牛们的编程能力有明确的排名。 整个比赛被分成了若干轮,每一轮是两头指定编号的奶牛的对决。如果编号为A的奶牛的编程能力强于编号为B的奶牛(1 <= A <= N; 1 <= B <= N; A != B) ,那么她们的对决中,编号为A的奶牛总是能胜出。 FJ想知道奶牛们编程能力的具体排名,于是他找来了奶牛们所有 M(1 <= M <= 4,500)轮比赛的结果,希望你能根据这些信息,推断出尽可能多的奶牛的编程能力排名。比赛结果保证不会自相矛盾。

输入输出格式

输入格式:

 

第1行: 2个用空格隔开的整数:N 和 M

第2..M+1行: 每行为2个用空格隔开的整数A、B,描述了参加某一轮比赛的奶 牛的编号,以及结果(编号为A,即为每行的第一个数的奶牛为 胜者)

 

输出格式:

 

第1行: 输出1个整数,表示排名可以确定的奶牛的数目

 

输入输出样例

输入样例#1:
5 5
4 3
4 2
3 2
1 2
2 5
输出样例#1:
2

说明

输出说明:

编号为2的奶牛输给了编号为1、3、4的奶牛,也就是说她的水平比这3头奶

牛都差。而编号为5的奶牛又输在了她的手下,也就是说,她的水平比编号为5的

奶牛强一些。于是,编号为2的奶牛的排名必然为第4,编号为5的奶牛的水平必

然最差。其他3头奶牛的排名仍无法确定。

分析:Floyd,建图时有向边,在数一下到这个点的确定了的边,如果除它以外到其他所有的点的距离都确定了,这个点可以确定,ans++;

 1 #include<cstdio>
 2 #include<cstring> 
 3 const int MAXN = 110;
 4 int w[MAXN][MAXN];
 5 int cnt[MAXN];
 6 int ans,n,m,flag;
 7 int main()
 8 {
 9     scanf("%d%d",&n,&m);
10     for (int i=1; i<=n; ++i)    
11         for (int j=1; j<=n; ++j)
12             w[i][j] = 1e7;
13     for (int x,y,i=1; i<=m; ++i)
14     {
15         scanf("%d%d",&x,&y);
16         w[y][x] = 1;
17     }
18     for (int k=1; k<=n; ++k)
19         for (int i=1; i<=n; ++i)
20             for (int j=1; j<=n; ++j)
21                 if (w[i][k]+w[k][j]<w[i][j]) 
22                     w[i][j] = w[i][k]+w[k][j];
23     for (int i=1; i<=n; ++i)
24         for (int j=1; j<=n; ++j)
25             if (w[i][j]<1e7) cnt[i]++, cnt[j]++;
26     for (int i=1; i<=n; ++i)
27         if (cnt[i]==n-1) ans++;
28     printf("%d",ans);
29     return 0;
30 }

 

posted @ 2017-06-21 19:17  MJT12044  阅读(179)  评论(0)    收藏  举报