1012: A MST Problem
1012: A MST Problem
时间限制: 1 Sec 内存限制: 32 MB提交: 63 解决: 33
[提交][状态][讨论版][命题人:外部导入]
题目描述
It is just a mining spanning tree ( 最小生成树 ) problem, what makes you a little difficult is that you are in a 3D space.
输入
The first line of the input contains the number of test cases in the file. And t he first line of each case
contains one integer numbers n(0<n<30) specifying the number of the point . The n next n line s, each line
contain s Three Integer Numbers xi,yi and zi, indicating the position of point i.
输出
For each test case, output a line with the answer, which should accurately rounded to two decimals .
样例输入
2
2
1 1 0
2 2 0
3
1 2 3
0 0 0
1 1 1
样例输出
1.41
3.97
#include<iostream>
#include<cmath>
#include<cstdio>
#define INF 99999999
#define MAXV 100
using namespace std;
typedef struct
{
double edges[100][100];
int n;
int e;
}MatGraph;
struct point
{
int x;
int y;
int z;
}point[100];
MatGraph g;
void CreateMat(MatGraph &g, double graph[100][100], int n)
{
int i, j;
g.n = n;
for(i = 0; i < g.n; ++i)
{
for(j = 0; j < g.n; ++j)
{
g.edges[i][j] = graph[i][j];
}
}
}
double Prim(MatGraph g, int v)
{
double lowcost[100];
double min_ = INF;
double r = 0;
int i, j, k;
int n = g.n;
for(i = 0; i < n; ++i)
{
lowcost[i] = g.edges[v][i];
}
for(i = 1; i < n; ++i)
{
min_ = INF;
for(j = 0; j < n; ++j)
{
if(lowcost[j] != -1 && lowcost[j] < min_)
{
min_ = lowcost[j];
k = j;
}
}
lowcost[k] = -1;
r = r + min_;
for(j = 0; j < n; ++j)
{
if(g.edges[k][j] < lowcost[j] && g.edges[k][j] != -1)
{
lowcost[j] = g.edges[k][j];
}
}
}
return r;
}
int main()
{
double length, ans, result;
double graph[100][100];
int num, i, j, k, l, t, n;
cin >> t;
while(t--)
{
cin >> n;
for(i = 0; i < n; ++i)
{
for(j = 0; j < n; ++j)
{
graph[i][j] = INF;
}
}
for(i = 0; i < n; ++i)
{
cin >> point[i].x >> point[i].y >> point[i].z;
}
for(i = 0; i < n; ++i)
{
for(j = 0; j < n; ++j)
{
length = sqrt((point[i].x - point[j].x)*(point[i].x - point[j].x) + (point[i].y - point[j].y)*(point[i].y - point[j].y) + (point[i].z - point[j].z)*(point[i].z - point[j].z));
graph[i][j] = graph[j][i] = length;
}
}
for(i = 0; i < n; ++i)
{
for(j = 0; j < n; ++j)
{
if(i == j)
{
graph[i][j] = -1;
}
}
}
CreateMat(g, graph, n);
result = Prim(g, 0);
printf("%.2lf\n", result);
}
return 0;
}

浙公网安备 33010602011771号