31天【代码随想录算法训练营34期】第八章 贪心算法 part01(● 理论基础 ● 455.分发饼干 ● 376. 摆动序列 ● 53. 最大子序和 )
贪心算法就是先选局部最优,再推全局最优
没有套路
- 将问题分解为若干个子问题
- 找出适合的贪心策略
- 求解每一个子问题的最优解
- 将局部最优解堆叠成全局最优解
455.分发饼干
class Solution:
def findContentChildren(self, g: List[int], s: List[int]) -> int:
g.sort()
s.sort()
output = 0
s_i = len(s)-1
for i in range(len(g)-1, -1, -1):
if s_i >= 0 and g[i] <= s[s_i]:
output += 1
s_i -= 1
return output
376. 摆动序列
class Solution:
def wiggleMaxLength(self, nums: List[int]) -> int:
if len(nums) == 1:
return 1
prediff = 0
curdiff = 0
count = 1
for i in range(len(nums)-1):
curdiff = nums[i+1] - nums[i]
if (curdiff > 0 and prediff <= 0) or (curdiff < 0 and prediff >= 0):
count += 1
prediff = curdiff
return count
53. 最大子序和
class Solution:
def maxSubArray(self, nums: List[int]) -> int:
result = float('-inf')
count = 0
for i in range(len(nums)):
count += nums[i]
if count > result:
result = count
if count <= 0:
count = 0
return result