15天【代码随想录算法训练营34期】第六章 二叉树 part02(● 层序遍历 10 ● 226.翻转二叉树 ● 101.对称二叉树 2 )

层序遍历 10
102.二叉树的层序遍历 (opens new window)

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:
    def levelOrder(self, root: Optional[TreeNode]) -> List[List[int]]:
        q_ = []
        result = []
        if root:
            q_.append(root)
        while q_:
            size = len(q_)
            sub_result = []
            for i in range(size):
                cur = q_.pop(0)
                sub_result.append(cur.val)
                if cur.left:
                    q_.append(cur.left)
                if cur.right:
                    q_.append(cur.right)
            result.append(sub_result)
        return result

107.二叉树的层次遍历II

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:
    def levelOrderBottom(self, root: Optional[TreeNode]) -> List[List[int]]:
        q_ = []
        result = []
        if root:
            q_.append(root)
        while q_:
            level = []
            size = len(q_)
            for i in range(size):
                cur = q_.pop(0)
                level.append(cur.val)
                if cur.left:
                    q_.append(cur.left)
                if cur.right:
                    q_.append(cur.right)
            result.insert(0, level)
        return result

199.二叉树的右视图

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:
    def rightSideView(self, root: Optional[TreeNode]) -> List[int]:
        q_ = []
        lyr_tree = []
        lyr = 0
        if root:
            q_.append(root)
        while q_:
            level = []
            size = len(q_)
            for i in range(size):
                cur = q_.pop(0)
                level.append(cur.val)
                if cur.left:
                    q_.append(cur.left)
                if cur.right:
                    q_.append(cur.right)
            lyr_tree.append(level)
            lyr += 1
        result = []
        for i in range(lyr):
            result.append(lyr_tree[i][-1])

        return result

637.二叉树的层平均值

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:
    def averageOfLevels(self, root: Optional[TreeNode]) -> List[float]:
        q_ = []
        result = []
        if root:
            q_.append(root)
        while q_:
            level = []
            size = len(q_)
            for i in range(size):
                cur = q_.pop(0)
                level.append(cur.val)
                if cur.left:
                    q_.append(cur.left)
                if cur.right:
                    q_.append(cur.right)
            result.append(sum(level) / len(level))
        return result

429.N叉树的层序遍历

"""
# Definition for a Node.
class Node:
    def __init__(self, val=None, children=None):
        self.val = val
        self.children = children
"""
class Solution:
    def levelOrder(self, root: 'Node') -> List[List[int]]:
        q_ = []
        result = []
        if root:
            q_.append(root)
        while q_:
            level = []
            size = len(q_)
            for i in range(size):
                cur = q_.pop(0)
                level.append(cur.val)
                if cur.children:
                    for i in cur.children:
                        q_.append(i)
            result.append(level)
        return result

515.在每个树行中找最大值

116.填充每个节点的下一个右侧节点指针

117.填充每个节点的下一个右侧节点指针II

104.二叉树的最大深度

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:
    def maxDepth(self, root: Optional[TreeNode]) -> int:
        if root is None:
            return 0
        else:
            return 1 + max(self.maxDepth(root.left), self.maxDepth(root.right))

111.二叉树的最小深度

226.翻转二叉树

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:
    def invertTree(self, root: Optional[TreeNode]) -> Optional[TreeNode]:
        if root is None:
            return root
        else:
            root.left, root.right = root.right, root.left
            self.invertTree(root.left)
            self.invertTree(root.right)
            return root

101.对称二叉树 2

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:
    def compare(self, left, right):
        if left == None and right == None:
            return True
        if left == None or right == None:
            return False
        if left.val != right.val:
            return False
        res1 = self.compare(left.left, right.right)
        res2 = self.compare(left.right, right.left)
        return res1 and res2

    def isSymmetric(self, root: Optional[TreeNode]) -> bool:    
        return self.compare(root.left, root.right)
posted @ 2024-04-03 15:45  MiraMira  阅读(17)  评论(0)    收藏  举报