第三周-客户流失相关判断

第一部分——飞机客户数据分析预测

代码一:读取数据

import pandas as pd
datafile='F:\大数据挖掘-实训/air_data.csv'
resultfile=r"F:\大数据挖掘-实训\explore.xlsx"

data=pd.read_csv(datafile,encoding='utf-8')

explore=data.describe(percentiles=[],include='all').T
explore['null']=len(data)-explore['count']

explore=explore[['null','max','min']]
explore.columns=[u'空值数',u'最大值',u'最小值']#表头重命名

'''
这里只选取部分探索结果。
describe()函数自动计算的字段有count(非空值数)、unique(唯一值数)、top(频数最高者)、
freq(最高频数)、mean(平均值)、std(方差)、min(最小值)、50%(中位数)、max(最大值)
'''

explore.to_csv(resultfile)

 

 代码二:分析数据并绘制基本图像

from datetime import datetime
import matplotlib.pyplot as plt
ffp=data['FFP_DATE'].apply(lambda x:datetime.strptime(x,'%Y/%m/%d'))
ffp_year=ffp.map(lambda x:x.year)

#绘制各年份会员入会人数直方图
fig=plt.figure(figsize=(8,5))
plt.rcParams['font.sans-serif']='SimHei'
plt.rcParams['axes.unicode_minus']='False'
plt.hist(ffp_year,bins='auto',color='#0504aa')
plt.xlabel('年份')
plt.ylabel('入会人数')
plt.title('各年份会员入会人数(3126)',fontsize=15)
plt.show()
plt.close

#提取会员不同性别人数
male=pd.value_counts(data['GENDER'])['']
female=pd.value_counts(data['GENDER'])['']
#绘制会员性别比例饼图
fig=plt.figure(figsize=(10,6))
plt.pie([male,female],labels=['',''],colors=['lightskyblue','lightcoral'],autopct='%1.1f%%')
plt.title('会员性别比例(3126)',fontsize=15)
plt.show()
plt.close()

#提取不同级别会员人数
lv_four=pd.value_counts(data['FFP_TIER'])[4]
lv_five=pd.value_counts(data['FFP_TIER'])[5]
lv_six=pd.value_counts(data['FFP_TIER'])[6]
#绘制会员各级别人数条形图
fig=plt.figure(figsize=(8,5))
plt.bar(x=range(3),height=[lv_four,lv_five,lv_six],width=0.4,alpha=0.8,color='skyblue')
plt.xticks([index for index in range(3)],['4','5','6'])
plt.xlabel('会员等级')
plt.ylabel('会员人数')
plt.title('会员各级别人数(3126)',fontsize=15)
plt.show()
plt.close

#提取会员年龄
age=data['AGE'].dropna()
age=age.astype('int64')
#绘制会员年龄分布箱型图
fig=plt.figure(figsize=(5,10))
plt.boxplot(age,
patch_artist=True,
labels=['会员年龄'],
boxprops={'facecolor':'lightblue'})
plt.title('会员年龄分布箱型图(3126)',fontsize=15)
plt.grid(axis='y')
plt.title('3126')
plt.show()
plt.close()

 

 

 

 代码三:客户乘机数据分析箱型图

lte=data['LAST_TO_END']
fc=data['FLIGHT_COUNT']
sks=data['SEG_KM_SUM']
#绘制最后乘机至结束时长箱型图
fig=plt.figure(figsize=(5,8))

plt.boxplot(lte,
patch_artist=True,
labels=['时长'],
boxprops={'facecolor':'lightblue'})
plt.title('会员最后乘机至结束时长分布箱型图(3126)',fontsize=15)

plt.grid(axis='y')
plt.show()
plt.close

#绘制客户飞行次数箱型图
fig=plt.figure(figsize=(5,8))
plt.boxplot(fc,
patch_artist=True,
labels=['飞行次数'],
boxprops={'facecolor':'lightblue'})

plt.title('会员飞行次数分布箱型图(3126)',fontsize=15)

plt.grid(axis='y')
plt.show()
plt.close

#绘制客户总飞行公里数箱型图
fig=plt.figure(figsize=(5,10))
plt.boxplot(sks,
patch_artist=True,
labels=['总飞行公里数'],
boxprops={'facecolor':'lightblue'})

plt.title('客户总飞行公里数箱型图(3126)',fontsize=15)

plt.grid(axis='y')
plt.show()
plt.close

 

 

 

 

 

 代码四:会员积分数据分析直方图

#积分信息类别
#提取会员积分兑换次数
ec=data['EXCHANGE_COUNT']
#绘制会员兑换积分次数直方图
fig=plt.figure(figsize=(8,5))
plt.hist(ec,bins=5,color='#0504aa')
plt.xlabel('兑换次数')
plt.ylabel('会员人数')
plt.title('会员兑换积分次数直方图(3126)',fontsize=15)
plt.show()
plt.close

#提取会员总累计积分
ps=data['Points_Sum']
#绘制会员总累计积分箱型图
fig=plt.figure(figsize=(5,8))
plt.boxplot(ps,
patch_artist=True,
labels=['总累计积分'],
boxprops={'facecolor':'lightblue'})
plt.title('客户总累计积分箱型图(3126)',fontsize=15)
plt.grid(axis='y')
plt.show()
plt.close

 

 

 

 代码五:相关矩阵及热力图

#提取属性并合并为新数据集
data_corr=data[['FFP_TIER','FLIGHT_COUNT','LAST_TO_END','SEG_KM_SUM','EXCHANGE_COUNT','Points_Sum']]
age1=data['AGE'].fillna(0)
data_corr['AGE']=age1.astype('int64')
data_corr['ffp_year']=ffp_year

#计算相关性矩阵
dt_corr=data_corr.corr(method='pearson')
print('相关性矩阵为:\n',dt_corr)

#绘制热力图
import seaborn as sns
plt.subplots(figsize=(10,10))
sns.heatmap(dt_corr,annot=True,vmax=1,square=True,cmap='Blues')
plt.title('相关性热力图-3126')
plt.show()
plt.close

 

 

 

 代码六:进行数据清洗

import numpy as np
import pandas as pd

datafile ='F:\大数据挖掘-实训/air_data.csv'
cleanedfile='F:\大数据挖掘-实训\\data_cleaned.csv'

#读取数据
airline_data=pd.read_csv(datafile,encoding='utf-8')
print('原始数据的形状为:',airline_data.shape)

#去除票价为空的记录
airline_notnull=airline_data.loc[airline_data['SUM_YR_1'].notnull()&airline_data['SUM_YR_2'].notnull(),:]
print('删除缺失记录后数据的形状为:',airline_notnull.shape)

#只保留票价非零的,或者平均折扣率不为0且总飞行公里数大于0的记录
index1=airline_notnull['SUM_YR_1']!=0
index2=airline_notnull['SUM_YR_2']!=0
index3=(airline_notnull['SEG_KM_SUM']>0)&(airline_notnull['avg_discount']!=0)
index4=airline_notnull['AGE']>100#去除年龄大于100的记录
airline=airline_notnull[(index1|index2)&index3&~index4]
print('数据清洗后数据的形状为:',airline.shape)
airline.to_csv(cleanedfile)

 

 代码七:

import pandas as pd
import numpy as np

#读取数据清洗后的数据
cleanedfile='F:\大数据挖掘-实训\\data_cleaned.csv'
airline=pd.read_csv(cleanedfile,encoding='utf-8')
#选取需求属性
airline_selection=airline[['FFP_DATE','LOAD_TIME','LAST_TO_END','FLIGHT_COUNT','SEG_KM_SUM','avg_discount']]
print('筛选的属性前5行为:\n',airline_selection.head())

 

 

import pandas as pd
import numpy as np

#读取数据清洗后的数据
cleanedfile='D:\大三下大数据分析\课堂练习第三周\\data_cleaned.csv'
airline=pd.read_csv(cleanedfile,encoding='utf-8')
#选取需求属性
airline_selection=airline[['FFP_DATE','LOAD_TIME','LAST_TO_END','FLIGHT_COUNT','SEG_KM_SUM','avg_discount']]
print('筛选的属性前5行为:\n',airline_selection.head())

 雷达图代码:

%matplotlib inline
import matplotlib.pyplot as plt
# 客户分群雷达图
labels = ['ZL','ZR','ZF','ZM','ZC']
legen = ['客户群' + str(i + 1) for i in cluster_center.index]  # 客户群命名,作为雷达图的图例
lstype = ['-','--',(0, (3, 5, 1, 5, 1, 5)),':','-.']
kinds = list(cluster_center.iloc[:, 0])
# 由于雷达图要保证数据闭合,因此再添加L列,并转换为 np.ndarray
cluster_center = pd.concat([cluster_center, cluster_center[['ZL']]], axis=1)
centers = np.array(cluster_center.iloc[:, 0:])

# 分割圆周长,并让其闭合
n = len(labels)
angle = np.linspace(0, 2 * np.pi, n, endpoint=False)
angle = np.concatenate((angle, [angle[0]]))

# 绘图
fig = plt.figure(figsize=(8,6))
ax = fig.add_subplot(111, polar=True)  # 以极坐标的形式绘制图形
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号

# 画线
for i in range(len(kinds)):
    ax.plot(angle, centers[i], linestyle=lstype[i], linewidth=2, label=kinds[i])
# 添加属性标签
ax.set_thetagrids(angle * 180 / np.pi, labels)
plt.title('客户特征分析雷达图3126-tang')
plt.legend(legen)
plt.show()
plt.close

 

posted @ 2023-03-13 21:31  Mint-L  阅读(45)  评论(0)    收藏  举报