• 博客园logo
  • 会员
  • 周边
  • 新闻
  • 博问
  • 闪存
  • 众包
  • 赞助商
  • Chat2DB
    • 搜索
      所有博客
    • 搜索
      当前博客
  • 写随笔 我的博客 短消息 简洁模式
    用户头像
    我的博客 我的园子 账号设置 会员中心 简洁模式 ... 退出登录
    注册 登录
 






minor_second

 
 

Powered by 博客园
博客园 | 首页 | 新随笔 | 联系 | 订阅 订阅 | 管理

2021年11月5日

[paper reading][AISTATS 2019] A General Framework for Multi-fidelity Bayesian Optimization with Gaussian Processes
摘要: AISTATS 2019 http://proceedings.mlr.press/v89/song19b/song19b.pdf principled framework for multi-fidelity BO with theoretical and empirical results 3 阅读全文
posted @ 2021-11-05 21:35 minor_second 阅读(54) 评论(0) 推荐(0)
 
[paper reading][RoboCup 2018] Combining Simulations and Real-robot Experiments for Bayesian Optimization of Bipedal Gait Stabilization
摘要: RoboCup 2018 https://arxiv.org/pdf/1809.05374.pdf used a proposed BO algorithm to trade-off between sim and real engineered cost function for bipedal 阅读全文
posted @ 2021-11-05 21:08 minor_second 阅读(35) 评论(0) 推荐(0)
 
[paper reading][CoRL 2017] Deep Kernels for Optimizing Locomotion Controllers
摘要: CoRL 2017 http://proceedings.mlr.press/v78/antonova17a/antonova17a.pdf imformed engineered deep kernel (1-dim) cost agnostic traj summaries for flexib 阅读全文
posted @ 2021-11-05 20:45 minor_second 阅读(36) 评论(0) 推荐(0)
 
[paper reading][ICRA 2018] Bayesian Optimization Using Domain Knowledge on the ATRIAS Biped
摘要: ICRA 2018 https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8461237 incorporating domain knowledge, with a focus on bipedal locomotion a sepera 阅读全文
posted @ 2021-11-05 19:28 minor_second 阅读(38) 评论(0) 推荐(0)
 
[paper reading][JMLR 2019] Bayesian Optimization for Policy Search via Online-Offline Experimentation
摘要: JMLR 2019 https://www.jmlr.org/papers/volume20/18-225/18-225.pdf combine online and offline multi-task GP, kernel for multi-task 1 Introduction A/B: s 阅读全文
posted @ 2021-11-05 17:31 minor_second 阅读(67) 评论(0) 推荐(0)
 
[paper reading][JMLR 2019] Using Simulation to Improve Sample-Efficiency of Bayesian Optimization for Bipedal Robots
摘要: JMLR 2019 https://www.jmlr.org/papers/volume20/18-196/18-196.pdf utilizes simulation to learn structured feature transforms that map the original para 阅读全文
posted @ 2021-11-05 16:52 minor_second 阅读(61) 评论(0) 推荐(0)
 
[paper reading][Proceedings of the IEEE 2016] Taking the Human Out of the Loop: A Review of Bayesian Optimization
摘要: Proceedings of the IEEE 2016 https://ieeexplore.ieee.org/abstract/document/7352306 A review of BO, an optimization algorithm typically for "hyperparam 阅读全文
posted @ 2021-11-05 12:25 minor_second 阅读(52) 评论(0) 推荐(0)
 
[paper reading][ICRA 2017] Virtual vs. real: Trading off simulations and physical experiments in reinforcement learning with Bayesian optimization
摘要: ICRA 2017 https://ieeexplore.ieee.org/abstract/document/7989186 parameters of policies Entropy Search, BO algorithm combine 2 sources: cheap but inacc 阅读全文
posted @ 2021-11-05 00:08 minor_second 阅读(49) 评论(0) 推荐(0)