2020 BIT冬训-二分三分快速幂矩阵 H - Fibonacci POJ - 3070 (矩阵快速幂)
In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 for n ≥ 2. For example, the first ten terms of the Fibonacci sequence are:
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …
An alternative formula for the Fibonacci sequence is
.
Given an integer n, your goal is to compute the last 4 digits of Fn.
Input
The input test file will contain multiple test cases. Each test case consists of a single line containing n (where 0 ≤ n ≤ 1,000,000,000). The end-of-file is denoted by a single line containing the number −1.
Output
For each test case, print the last four digits of Fn. If the last four digits of Fn are all zeros, print ‘0’; otherwise, omit any leading zeros (i.e., print Fn mod 10000).
Sample Input
0 9 999999999 1000000000 -1
Sample Output
0 34 626 6875
Hint
As a reminder, matrix multiplication is associative, and the product of two 2 × 2 matrices is given by
.
Also, note that raising any 2 × 2 matrix to the 0th power gives the identity matrix:
.
这题是矩阵快速幂。用二维数组表示矩阵,然后temp[i][j]+=(a[i][k]*d[k][j])来更新矩阵。(矩阵相乘还是麻烦的……)
需要特判的是0和1的时候直接返回值即可。
#include<cstdio> #include<algorithm> #include<cstring> using namespace std; int n,ans=1,d[2][2],a[2][2],temp[2][2]; int main(){ d[0][0]=1,d[1][0]=1,d[0][1]=1,a[0][0]=1,a[1][1]=1; while(scanf("%d",&n)&&n!=-1){ if(n==0){ printf("0\n"); continue; }else if(n==1){ printf("1\n"); continue; } memset(d,0,sizeof(d)); memset(a,0,sizeof(a)); d[0][0]=1,d[1][0]=1,d[0][1]=1,a[0][0]=1,a[1][1]=1; while(n){ if(n&1){ memset(temp,0,sizeof(temp)); for(int i=0;i<2;i++) for(int j=0;j<2;j++) for(int k=0;k<2;k++) temp[i][j]+=(d[i][k]*a[k][j])%10000; for(int i=0;i<2;i++) for(int j=0;j<2;j++) a[i][j]=temp[i][j]%10000; } memset(temp,0,sizeof(temp)); for(int i=0;i<2;i++) for(int j=0;j<2;j++) for(int k=0;k<2;k++) temp[i][j]+=(d[i][k]*d[k][j])%10000; for(int i=0;i<2;i++) for(int j=0;j<2;j++) d[i][j]=temp[i][j]%10000; n>>=1; } if(a[1][1]==0) printf("0000\n"); else printf("%d\n",a[0][1]); } }

浙公网安备 33010602011771号