microsoftxiao

记忆 流逝

导航

BGET内存分配器

    
关于BGET
Buffer allocator [缓冲分配]

1972年John Walker设计并实现,基于1966年的Algol OPRO$ 算法实现。

此程序为 public domain    // 允许自由使用和修改

   B G E T

      Buffer allocator

    Designed and implemented in April of 1972 by John Walker, based on the
    Case Algol OPRO$ algorithm implemented in 1966.

    Reimplemented in 1975 by John Walker for the Interdata 70.
    Reimplemented in 1977 by John Walker for the Marinchip 9900.
    Reimplemented in 1982 by Duff Kurland for the Intel 8080.

    Portable C version implemented in September of 1990 by an older, wiser
    instance of the original implementor.

    Souped up and/or weighed down  slightly  shortly  thereafter  by  Greg
    Lutz.

    AMIX  edition, including the new compaction call-back option, prepared
    by John Walker in July of 1992.

    Bug in built-in test program fixed, ANSI compiler warnings eradicated,
    buffer pool validator  implemented,  and  guaranteed  repeatable  test
    added by John Walker in October of 1995.

  Messed up by Stefan Johansson 2005

    This program is in the public domain.

     1. This is the book of the generations of Adam.   In the day that God
 created man, in the likeness of God made he him;
     2. Male and female created he them;  and  blessed them,  and  called
 their name Adam, in the day when they were created.
     3. And  Adam  lived  an hundred and thirty years, and begat a son in
 his own likeness, and after his image; and called his name Seth:
     4. And the days of  Adam  after  he  had  begotten  Seth  were  eight
 hundred years: and he begat sons and daughters:
     5. And  all  the  days  that Adam lived were nine hundred and thirty
 years: and he died.
     6. And Seth lived an hundred and five years, and begat Enos:
     7. And Seth lived after he begat Enos eight hundred and seven  years,
 and begat sons and daughters:
     8.  And  all the days of Seth were nine hundred and twelve years: and
  he died.
     9. And Enos lived ninety years, and begat Cainan:
    10. And Enos lived after he begat  Cainan eight  hundred  and  fifteen
 years, and begat sons and daughters:
    11. And  all  the days of Enos were nine hundred  and five years:  and
 he died.
    12. And Cainan lived seventy years and begat Mahalaleel:
    13. And Cainan lived  after he  begat  Mahalaleel  eight  hundred  and
 forty years, and begat sons and daughters:
    14. And  all the days of Cainan were nine  hundred and ten years:  and
 he died.
    15. And Mahalaleel lived sixty and five years, and begat Jared:
    16. And Mahalaleel lived  after  he  begat Jared  eight  hundred  and
 thirty years, and begat sons and daughters:
    17. And  all  the  days  of Mahalaleel  were eight hundred ninety and
 five years: and he died.
    18. And Jared lived an hundred sixty and  two  years,   and  he  begat
 Enoch:
    19. And  Jared  lived  after he begat Enoch  eight hundred years,  and
 begat sons and daughters:
    20. And all the days of Jared  were nine hundred sixty and two  years:
 and he died.
    21. And Enoch lived sixty and five years, and begat Methuselah:
    22. And  Enoch  walked   with  God after  he  begat Methuselah  three
 hundred years, and begat sons and daughters:
    23. And all the days of  Enoch  were  three  hundred  sixty  and  five
 years:
    24. And Enoch walked with God: and he was not; for God took him.
    25. And  Methuselah  lived an  hundred  eighty and  seven years,  and
 begat Lamech.
    26. And Methuselah lived after he  begat Lamech seven  hundred  eighty
 and two years, and begat sons and daughters:
    27. And  all the days of Methuselah  were nine hundred  sixty and nine
 years: and he died.
    28. And Lamech lived an hundred eighty  and two  years,  and  begat  a
 son:
    29. And  he called his name Noah, saying,  This same shall comfort us
 concerning  our  work and toil of our hands, because of the ground
 which the LORD hath cursed.
    30. And  Lamech  lived  after  he begat Noah  five hundred ninety and
 five years, and begat sons and daughters:
    31. And all the days of Lamech were  seven hundred seventy and  seven
 years: and he died.
    32. And  Noah  was five hundred years old: and Noah begat Shem,  Ham,
 and Japheth.

    And buffers begat buffers, and links begat links, and  buffer  pools
    begat  links  to chains of buffer pools containing buffers, and lo the
    buffers and links and pools of buffers and pools of links to chains of
    pools  of  buffers were fruitful and they multiplied and the Operating
    System looked down upon them and said that it was Good.


    INTRODUCTION
    ============

    BGET  is a comprehensive memory allocation package which is easily
    configured to the needs of an application. BGET is  efficient  in
    both  the  time  needed to allocate and release buffers and in the
    memory  overhead  required for  buffer   pool   management.    It
    automatically    consolidates   contiguous  space  to   minimise
    fragmentation.  BGET is configured by  compile-time  definitions,
    Major options include:

 *   A  built-in  test  program to  exercise  BGET   and
     demonstrate how the various functions are used.

        *   Allocation  by  either the "first fit" or "best fit"
     method.

 *   Wiping buffers at release time to catch  code  which
     references previously released storage.

 *   Built-in  routines to dump individual buffers or the
     entire buffer pool.

 *   Retrieval of allocation and pool size statistics.

 *   Quantisation of buffer sizes to a power  of  two  to
     satisfy hardware alignment constraints.

 *   Automatic  pool compaction, growth, and shrinkage by
     means of call-backs to user defined functions.

    Applications  of  BGET  can  range from  storage  management   in
    ROM-based  embedded programs to providing the framework upon which
    a  multitasking  system  incorporating   garbage   collection   is
    constructed.   BGET  incorporates  extensive  internal consistency
    checking using the <assert.h> mechanism; all these checks  can  be
    turned off by compiling with NDEBUG defined, yielding a version of
    BGET with minimal size and maximum speed.

    The  basic algorithm  underlying  BGET  has withstood the test of
    time;  more  than  25  years   have   passed   since   the  first
    implementation  of this  code.  And yet, it is substantially more
    efficient than the native allocation  schemes  of  many  operating
    systems: the Macintosh and Microsoft Windows to name two, on which
    programs have obtained substantial speed-ups by layering  BGET  as
    an application level memory manager atop the underlying system's.

    BGET has been implemented on the largest mainframes and the lowest
    of microprocessors.   It  has served as the core for multitasking
    operating systems, multi-thread applications, embedded software in
    data  network switching processors, and a host of C programs.  And
    while it has accreted flexibility and additional options over  the
    years,  it remains  fast, memory efficient, portable, and easy to
    integrate into your program.


    BGET IMPLEMENTATION ASSUMPTIONS
    ===============================

    BGET is written in as portable a dialect of C  as  possible.   The
    only   fundamental  assumption   about  the  underlying  hardware
    architecture is that memory is allocated is a linear  array  which
    can  be  addressed  as a vector of C "char" objects.  On segmented
    address space architectures, this generally means that BGET should
    be used to allocate storage within a single segment (although some
    compilers simulate   linear   address   spaces   on    segmented
    architectures).   On  segmented  architectures,  then, BGET buffer
    pools  may not be larger than a segment, but since BGET allows any
    number of separate buffer pools, there is no limit on  the  total
    storage  which  can  be  managed,  only  on the largest individual
    object which can be allocated.  Machines  with  a  linear  address
    architecture,  such  as  the VAX, 680x0, Sparc, MIPS, or the Intel
    80386 and above in native mode, may use BGET without restriction.


    GETTING STARTED WITH BGET
    =========================

    Although BGET can be configured in a multitude of fashions,  there
    are  three basic  ways  of  working  with BGET. The  functions
    mentioned below are documented in the following  section. Please
    excuse  the  forward  references which are made in the interest of
    providing a roadmap to guide you  to  the  BGET  functions  you're
    likely to need.

    Embedded Applications
    ---------------------

    Embedded applications  typically  have  a  fixed  area  of memory
    dedicated  to  buffer  allocation (often in a separate RAM address
    space distinct from the ROM that contains  the  executable code).
    To use  BGET in such an environment, simply call bpool() with the
    start address and length of the buffer  pool  area in  RAM,  then
    allocate  buffers  with  bget()  and  release  them  with  brel().
    Embedded applications with very limited RAM but abundant CPU speed
    may  benefit  by configuring BGET for BestFit allocation (which is
    usually not worth it in other environments).

    Malloc() Emulation
    ------------------

    If the C library malloc() function is too  slow,  not  present  in
    your  development environment (for example, an a native Windows or
    Macintosh program), or otherwise unsuitable, you  can  replace  it
    with  BGET.  Initially define a buffer pool of an appropriate size
    with bpool()--usually obtained by making a call to the  operating
    system's  low-level  memory allocator.  Then allocate buffers with
    bget(), bgetz(), and bgetr() (the last two permit  the  allocation
    of buffers initialised to zero and [inefficient] re-allocation of
    existing buffers for  compatibility  with  C  library  functions).
    Release buffers by calling brel(). If a buffer allocation request
    fails, obtain more storage from the underlying  operating  system,
    add it to the buffer pool by another call to bpool(), and continue
    execution.

    Automatic Storage Management
    ----------------------------

    You can use BGET as your application's native memory  manager  and
    implement  automatic  storage  pool  expansion,  contraction,  and
    optionally application-specific  memory  compaction  by  compiling
    BGET  with the  BECtl  variable defined, then calling bectl() and
    supplying  functions  for  storage compaction,  acquisition,  and
    release,  as  well as a standard pool expansion increment. All of
    these functions are optional (although it doesn't make much  sense
    to provide  a  release  function without an acquisition function,
    does it?). Once the call-back functions have  been  defined  with
    bectl(),  you simply use bget() and brel() to allocate and release
    storage as before. You can supply an  initial  buffer  pool  with
    bpool()  or  rely  on  automatic  allocation to acquire the entire
    pool.  When a call on  bget()  cannot  be  satisfied,  BGET  first
    checks  if a compaction function has been supplied.  If so, it is
    called (with the space required to satisfy the allocation  request
    and a sequence number to allow the compaction routine to be called
    successively without looping).  If the compaction function is able
    to  free any storage (it needn't know whether the storage it freed
    was adequate) it should return a  nonzero  value,  whereupon  BGET
    will retry the allocation request and, if it fails again, call the
    compaction function again with the next-higher sequence number.

    If the  compaction  function  returns zero, indicating failure to
    free space, or no compaction function is defined, BGET next  tests
    whether  a non-NULL  allocation function was supplied to bectl().
    If so, that function is called with  an  argument  indicating  how
    many  bytes  of  additional  space are required.  This will be the
    standard pool expansion increment supplied in the call to  bectl()
    unless  the  original  bget()  call requested a buffer larger than
    this; buffers larger than the standard pool block can  be  managed
    "off  the books" by BGET in this mode.  If the allocation function
    succeeds in obtaining the storage, it returns a pointer to the new
    block  and BGET  expands  the  buffer  pool;  if  it  fails,  the
    allocation request fails and returns NULL to  the  caller.  If  a
    non-NULL  release  function  is  supplied, expansion blocks which
    become totally empty are released  to  the global free  pool  by
    passing their addresses to the release function.

    Equipped  with  appropriate  allocation,  release, and compaction
    functions, BGET can be used as part of very  sophisticated memory
    management  strategies,  including  garbage  collection. (Note,
    however, that BGET is *not* a garbage  collector  by  itself,  and
    that  developing  such a system requires much additional logic and
    careful design of the application's memory allocation strategy.)


    BGET FUNCTION DESCRIPTIONS
    ==========================

    Functions implemented in this file (some are enabled by certain of
    the optional settings below):

     void bpool(void *buffer, bufsize len);

    Create a buffer pool of <len> bytes, using the storage starting at
    <buffer>. You  can  call bpool()  subsequently  to   contribute
    additional storage to the overall buffer pool.

     void *bget(bufsize size);

    Allocate  a  buffer of <size> bytes.  The address of the buffer is
    returned, or NULL if insufficient memory was available to allocate
    the buffer.

     void *bgetz(bufsize size);

    Allocate a buffer of <size> bytes and clear it to all zeroes.  The
    address of the buffer is returned, or NULL if insufficient memory
    was available to allocate the buffer.

     void *bgetr(void *buffer, bufsize newsize);

    Reallocate a buffer previously allocated by bget(),  changing  its
    size  to  <newsize>  and  preserving  all  existing data.  NULL is
    returned if insufficient memory is available  to  reallocate  the
    buffer, in which case the original buffer remains intact.

     void brel(void *buf);

    Return  the  buffer  <buf>, previously allocated by bget(), to the
    free space pool.

     void bectl(int (*compact)(bufsize sizereq, int sequence),
         void *(*acquire)(bufsize size),
         void (*release)(void *buf),
         bufsize pool_incr);

    Expansion control: specify functions through which the package may
    compact  storage  (or  take  other appropriate  action)  when  an
    allocation request  fails,  and  optionally automatically acquire
    storage for expansion blocks  when necessary,  and  release  such
    blocks when they become empty.  If <compact> is non-NULL, whenever
    a buffer allocation request fails, the <compact> function will  be
    called with arguments specifying the number of bytes (total buffer
    size,  including  header  overhead)  required   to  satisfy   the
    allocation request, and a sequence number indicating the number of
    consecutive  calls on  <compact>  attempting  to satisfy   this
    allocation request.   The sequence number is 1 for the first call
    on <compact> for a given allocation  request,  and increments  on
    subsequent calls, permitting  the  <compact>  function  to  take
    increasingly dire measures in an attempt to free up  storage.   If
    the  <compact>  function  returns  a nonzero value, the allocation
    attempt is re-tried.  If <compact> returns 0 (as  it  must if  it
    isn't  able  to  release  any  space  or add storage to the buffer
    pool), the allocation request fails, which can  trigger  automatic
    pool expansion if the <acquire> argument is non-NULL.  At the time
    the  <compact>  function  is  called,  the state  of  the buffer
    allocator  is  identical  to  that at  the  moment the allocation
    request was made; consequently, the <compact>  function  may  call
    brel(), bpool(), bstats(), and/or directly manipulate  the buffer
    pool  in  any  manner which would be valid were the application in
    control.  This does not, however, relieve the  <compact>  function
    of the need to ensure that whatever actions it takes do not change
    things   underneath  the  application  that  made  the  allocation
    request.  For example, a <compact> function that released a buffer
    in the  process  of  being reallocated with bgetr() would lead to
    disaster.  Implementing a safe and effective  <compact>  mechanism
    requires  careful  design of an application's memory architecture,
    and cannot generally be easily retrofitted into existing code.

    If <acquire> is non-NULL, that function will be called whenever an
    allocation request  fails.  If the <acquire> function succeeds in
    allocating the requested space and returns a pointer  to  the  new
    area,  allocation will proceed using the expanded buffer pool.  If
    <acquire> cannot obtain the requested space, it should return NULL
    and   the entire allocation  process  will  fail.   <pool_incr>
    specifies the normal expansion block size. Providing an <acquire>
    function will cause subsequent bget()  requests  for  buffers  too
    large  to  be  managed in the linked-block scheme (in other words,
    larger than <pool_incr> minus the buffer overhead) to be satisfied
    directly by calls to the <acquire> function.  Automatic release of
    empty pool blocks will occur only if all pool blocks in the system
    are the size given by <pool_incr>.

     void bstats(bufsize *curalloc, bufsize *totfree,
   bufsize *maxfree, long *nget, long *nrel);

    The amount of  space  currently  allocated  is  stored  into  the
    variable  pointed  to by <curalloc>.  The total free space (sum of
    all free blocks in the pool) is stored into the  variable  pointed
    to by  <totfree>, and the size of the largest single block in the
    free space pool  is  stored  into the  variable  pointed to  by
    <maxfree>.  The  variables  pointed  to  by <nget> and <nrel> are
    filled, respectively, with the  number  of  successful  (non-NULL
    return) bget() calls and the number of brel() calls.

     void bstatse(bufsize *pool_incr, long *npool,
    long *npget, long *nprel,
    long *ndget, long *ndrel);

    Extended  statistics: The expansion block size will be stored into
    the variable pointed to by <pool_incr>, or the negative thereof if
    automatic  expansion  block  releases are disabled.  The number of
    currently active pool blocks will  be  stored  into  the  variable
    pointed  to  by  <npool>.  The variables pointed to by <npget> and
    <nprel> will be filled with, respectively, the number of expansion
    block   acquisitions   and releases  which  have  occurred.   The
    variables pointed to by <ndget> and <ndrel> will  be  filled  with
    the  number  of  bget()  and  brel()  calls, respectively, managed
    through blocks directly allocated by the acquisition  and  release
    functions.

     void bufdump(void *buf);

    The buffer pointed to by <buf> is dumped on standard output.

     void bpoold(void *pool, int dumpalloc, int dumpfree);

    All buffers in the buffer pool <pool>, previously initialised by a
    call on bpool(), are listed in ascending memory address order.  If
    <dumpalloc> is nonzero, the  contents  of  allocated  buffers  are
    dumped;  if <dumpfree> is nonzero, the contents of free blocks are
    dumped.

     int bpoolv(void *pool);

    The  named buffer pool,  previously  initialised by  a  call on
    bpool(), is validated for bad pointers, overwritten data, etc.  If
    compiled with NDEBUG not defined, any error generates an assertion
    failure.  Otherwise 1 is returned if the pool is valid,  0 if  an
    error is found.


    BGET CONFIGURATION
    ==================

posted on 2007-03-08 12:51  龙巢NET刀  阅读(1289)  评论(0)    收藏  举报