7.2.2 计数中的常见转化
计数中的常见转化
一些组合恒等式
\[\binom n m = \binom {n} {n - m} \\
\sum_{i = 0}^n \binom n i = 2^n \\
\sum_{i = 0}^n \binom i m = \binom {n + 1} {m + 1} \\
\sum_i \binom n i \binom m {k - i} = \binom {n + m} k \\
m\binom n m = n \binom {n - 1} {m - 1}
\]
最后一个式子推广一下,可以转化成“吸收公式”
\[m^{\underline{k}} \binom n m = n^{\underline{k}} \binom {n - k} {m - k}
\]
普通幂和下降幂的转化
\[x^n = \sum_{k = 0}^n {n \brace k} x^{\underline k}
\]