基于mykernel 2.0的操作系统内核
1.搭建虚拟的x86-64 CPU实验平台mykernel
实验平台:Ubuntu18.04
wget https://raw.github.com/mengning/mykernel/master/mykernel-2.0_for_linux-5.4.34.patch
sudo apt install axel
axel -n 20 https://mirrors.edge.kernel.org/pub/linux/kernel/v5.x/linux-5.4.34.tar.xz
xz -d linux-5.4.34.tar.xz
tar -xvf linux-5.4.34.tar
cd linux-5.4.34
patch -p1 < ../mykernel-2.0_for_linux-5.4.34.patch
sudo apt install build-essential libncurses-dev bison flex libssl-dev libelf-dev
make defconfig # Default configuration is based on 'x86_64_defconfig'
make -j$(nproc)
sudo apt install qemu # install QEMU
qemu-system-x86_64 -kernel arch/x86/boot/bzImage
测试:

在mykernel目录下,可以看到mymain.c和myinterrupt.c,mymain.c中的代码在不停地执行,同时有一个中断处理程序的上下文环境,周期性地产生时钟中断信号,能够触发myinterrupt.c中的代码。
2.mypcb.h头文件
#define MAX_TASK_NUM 4 #define KERNEL_STACK_SIZE (1024 * 8) /* CPU-specific state of this task */ struct Thread { unsigned long ip; unsigned long sp; }; typedef struct PCB{ int pid; volatile long state; char stack[KERNEL_STACK_SIZE]; /* CPU-specific state of this task */ struct Thread thread; unsigned long task_entry; struct PCB *next; }tPCB; void my_schedule(void);
此文件用来定义进程控制块PCB。其中ip和sp为进程中线程的ip和sp,PCB中包括进程号、进程状态、栈、线程、入口函数、下一个进程的PCB。
3.对mymain.c进行修改
1)修改入口函数:修改前的文件代码:这是mykernel内核代码的入口。负责初始化内核的各个组成部分。

修改代码:
#include "mypcb.h" tPCB task[MAX_TASK_NUM], *my_current_task = NULL; volatile int my_need_sched = 0; static void my_process(void); void __init my_start_kernel(void) { int pid = 0; int i; /* Initialize process 0*/ task[pid].pid = pid; task[pid].state = 0;/* -1 unrunnable, 0 runnable, >0 stopped */ task[pid].task_entry = task[pid].thread.ip = (unsigned long)my_process; task[pid].thread.sp = (unsigned long)&task[pid].stack[KERNEL_STACK_SIZE-1]; task[pid].next = &task[pid]; /*fork more process */ for(i=1;i<MAX_TASK_NUM;i++) { memcpy(&task[i],&task[0],sizeof(tPCB)); task[i].pid = i; task[i].state = -1; task[i].thread.sp = (unsigned long)&task[i].stack[KERNEL_STACK_SIZE-1]; task[i].next = task[i-1].next; task[i-1].next = &task[i]; } /* start process 0 by task[0] */ pid = 0; my_current_task = &task[pid]; asm volatile( "movq %1,%%rsp\n\t" /* 将进程原堆栈栈顶的地址存入RSP寄存器 */ "pushq %1\n\t" /* 将当前RBP寄存器值压栈 */ "pushq %0\n\t" /* 将当前进程的RIP压栈 */ "ret\n\t" /* 让压栈的进程RIP保存到RIP寄存器 */ : : "c" (task[pid].thread.ip),"d" (task[pid].thread.sp) ); }
首先初始化0号进程,将进程状态设置为就绪。在启动进程0时,首先将RSP寄存器指向进程0的堆栈栈底;然后将当前RBP寄存器的值压栈,此时RSP与RBP相等;再将当前进程的RIP入栈,此时RSP = RSP - 8;最后将my_process(void)函数的地址放入RIP寄存器,RSP = RSP + 8。完成进程0的启动,开始执行my_process(void)函数。
2)添加my_process函数:用来作为进程的代码模拟一个进程。进程运行完一个时间片后主动让出CPU,没有采用中断。
void my_process(void) { int i = 0; while(1) { i++; if(i%10000000 == 0) { printk(KERN_NOTICE "this is process %d -\n",my_current_task->pid); if(my_need_sched == 1) { my_need_sched = 0; my_schedule(); } printk(KERN_NOTICE "this is process %d +\n",my_current_task->pid); } } }
4.对myinterrupt.c进行修改
1)修改my_timer_handler用来记录时间片
void my_timer_handler(void) { if(time_count%1000 == 0 && my_need_sched != 1) { printk(KERN_NOTICE ">>>my_timer_handler here<<<\n"); my_need_sched = 1; } time_count ++ ; return; }
2)增加进程切换代码my_schedule()函数
void my_schedule(void) { tPCB *next, *prev; if (my_current_task == NULL || my_current_task->next == NULL) return; printk(KERN_NOTICE ">>> my_schedule <<<\n"); /* schedule */ next = my_current_task->next; prev = my_current_task; if (next->state == 0) { my_current_task = next; printk(KERN_NOTICE ">>>switch from %d to %d<<<\n",prev->pid, next->pid); /* switch to next process */ asm volatile( "pushq %%rbp\n\t" /* save rbp of prev */ "movq %%rsp, %0\n\t" /* save rsp */ "movq %2, %%rsp\n\t" /* restore rsp */ "movq $1f, %1\n\t" /* save rip */ "pushq %3\n\t" "ret\n\t" "1:\t" /* next process start here */ "popq %%rbp\n\t" : "=m" (prev->thread.sp), "=m" (prev->thread.ip) : "m" (next->thread.sp), "m" (next->thread.ip) ); } else { next->state = 0; my_current_task = next; printk(KERN_NOTICE ">>>switch to new process %d<<<\n",next->pid); } }
当两个进程切换时首先将当前进程0的RBP值和RSP值分别保存在堆栈和prev->thread.sp;然后将进程1的栈顶地址放在RSP寄存器,此时完成了进程0和进程1的堆栈切换;进程在执行过程中,当时间片用完需要进行进程切换时,需要先保存当前的进程上下文环境,下次进程被调度执行时,需要恢复进程上下文环境,就这样通过虚拟化的进程概念实现了多道程序在同⼀个物理CPU上并发执行。
5.结果测试
重新编译后测试结果如下:

浙公网安备 33010602011771号