摘要:
马尔科夫你需要知道这么几个点:
第一个是要知道如何形成马尔科夫随机场的条件,就是当有多个随机变量满足:Xi只由他的邻居决定,至于邻居是可以形成无向图,邻居是点,邻居和邻居的连线是边。
第二个要清楚的是Hammersley-Clifford-Theorem形成的条件,很容易,是说马尔科夫随机场里面的P都大于0的时候,这个也叫作矢量化,在CRF里面有提到,也就是当P大于0的时候,x也就是一条一条的rules,当他们成立的时候的概率等于势函数的乘积。
第三个要知道MRF和rules有什么关系,为什么要在这里运用MRF,MRF是可以计算所有KB的权重不同的时候的概率,概率是怎么算的呢,在第二条我讲过了,就是当rules成立的时候势函数的乘积,但是在计算KB的总权重时,并不是每个rules都会成立,我们根据式子,可以知道P是是函数的乘积,势函数是e的权重次方,e是单调递增函数,所以权重越大,那么势函数越大,那么P就越大,当权重最大的时候,也就是rules都成立的时候,就是KB权重最大的时候。
阅读全文