\[\to\qquad \gets\qquad \left\vert a \right\vert\qquad \lVert a \rVert\qquad \mathrm{d}t \qquad\partial t\qquad \nabla\psi\\
\]
\to \gets\qquad \left\vert a \right\vert \lVert a \rVert\qquad \mathrm{d}t \qquad\partial t\qquad \nabla\psi
\[x^2\qquad x_2\qquad x^{32}_{23}\\
\]
x^2 x_2 x^{32}_
\[\cdot\qquad \neq\qquad \equiv\qquad \bmod\\
\pm,\mp,\times,\div,\otimes,\odot,\oplus,\ominus,\bigoplus\\
\varnothing,\in,\notin,\ni,\not\ni\\
\cap,\cup,\subset,\supset,\supseteq,\subseteqq,\subsetneqq\\
\sim,\cong\\,\ll,\gg,\le,\ge,\leqslant,\geqslant\\
\forall,\exists,\therefore,\because\\
\and,\And,\or,\O,\binom{a}{b},\dbinom{n}{n-r},\mathrm{G}\\
\]
\cdot \neq \equiv \bmod
\pm,\mp,\times,\div,\otimes,\odot,\oplus,\ominus,\bigoplus\
\varnothing,\in,\notin,\ni,\not\ni
\cap,\cup,\subset,\supset,\supseteq,\subseteqq,\subsetneqq\
\sim,\cong\,\ll,\gg,\le,\ge,\leqslant,\geqslant
\forall,\exists,\therefore,\because
\and,\And,\or,\O,\binom{a}{b},\dbinom{n}{n-r},\mathrm{G}\
\[\sqrt{x}\qquad \sqrt[n]{x}\qquad \sqrt{x^2+\sqrt{y}}\\
\]
\sqrt{x} \sqrt[n]{x} \sqrt{x^2+\sqrt{y}}
\[\frac{x}{y}\qquad \bar x\qquad \hat x\qquad \widetilde x\qquad \overline{x}\qquad \underline{y}\\
\]
\frac{x}{y}\qquad \bar x\qquad \hat x\qquad \widetilde x\qquad \overline{x}\qquad \underline{y}\
\[\dot{a},\ddot{a},\acute{a},\grave{a},\check{a},\breve{a}
\]
\dot{a},\ddot{a},\acute{a},\grave{a},\check{a},\breve
\[\overbrace{1+2+\cdots+n}^{n个}\qquad \underbrace{1+2+\dots+n}_{26}\\
\]
\overbrace{1+2+\cdots+n}^{n个}\qquad \underbrace{1+2+\dots+n}_{26}\
\[\vec{a}\qquad \overrightarrow{AB}\qquad \overleftarrow{CD}\\
\]
\vec{a}\qquad \overrightarrow{AB}\qquad \overleftarrow{CD}\
\[\lim_{x\to0}\qquad \infty\qquad \int_{0}^{1}\qquad y'\\
\]
\lim_{x\to0}\qquad \infty\qquad \int_{0}^{1}\qquad y'\
\[\sum_{i=1}^{n}x_i\qquad \prod_{i=1}^{n}x_i\qquad
\displaystyle\sum_{i=1}^{n}x_i\\
\]
\sum_{i=1}^{n}x_i\qquad \prod_{i=1}^{n}x_i\qquad
\displaystyle\sum_{i=1}^{n}x_i\
\[\alpha\qquad\beta\qquad\gamma\qquad\mu\qquad\sigma\qquad\varepsilon\qquad\theta\qquad\chi\qquad\zeta\qquad\tau\\
\]
\alpha\qquad\beta\qquad\gamma\qquad\mu\qquad\sigma\qquad\varepsilon\qquad\theta\qquad\chi\qquad\zeta\qquad\tau\
\[\eta\qquad\rho\qquad\xi\qquad\psi\qquad\pi\qquad\phi\qquad\nu\qquad\omega\qquad\varrho\qquad\lambda\\
\]
\eta\qquad\rho\qquad\xi\qquad\psi\qquad\pi\qquad\phi\qquad\nu\qquad\omega\qquad\varrho\qquad\lambda\
\[\epsilon\qquad\iota\qquad\varpi\qquad\vartheta\qquad\varphi\qquad\varsigma\qquad\kappa\qquad\delta\qquad\upsilon\qquad\Gamma\\
\]
\epsilon\qquad\iota\qquad\varpi\qquad\vartheta\qquad\varphi\qquad\varsigma\qquad\kappa\qquad\delta\qquad\upsilon\qquad\Gamma\
\[\Lambda\qquad\Sigma\qquad\Psi\qquad\Delta\qquad\Xi\qquad\Upsilon\qquad\Omega\qquad\Theta\qquad\Pi\qquad\Phi\\
\]
\Lambda\qquad\Sigma\qquad\Psi\qquad\Delta\qquad\Xi\qquad\Upsilon\qquad\Omega\qquad\Theta\qquad\Pi\qquad\Phi\
\[\ldots\qquad\cdots\qquad\vdots\qquad\ddots\\
\]
\ldots\qquad\cdots\qquad\vdots\qquad\ddots\
matrix bmatrix vmatrix pmatrix
\[\begin{matrix}
1&2\\
3&4\\
\end{matrix}\qquad
\begin{bmatrix}
1&2\\
3&4\\
\end{bmatrix}\qquad
\begin{vmatrix}
1&2\\
3&4\\
\end{vmatrix}\qquad
\begin{pmatrix}
1&2\\
3&4\\
\end{pmatrix}\\
\]
\begin{matrix}
1&2\
3&4\
\end{matrix}\qquad
\begin{bmatrix}
1&2\
3&4\
\end{bmatrix}\qquad
\begin{vmatrix}
1&2\
3&4\
\end{vmatrix}\qquad
\begin{pmatrix}
1&2\
3&4\
\end{pmatrix}\
\[D(x)=\begin{cases}
\lim\limits_{x\to0} \frac{a^x}{b+c},&x<3\\
\pi,&x=3\\
\int_a^{3b}x_{ij}+e^2dx,&x>3\\
\end{cases}
\]
D(x)=\begin{cases}
\lim\limits_{x\to0} \frac{a^x}{b+c},&x<3\
\pi,&x=3\
\int_a{3b}x_{ij}+e2dx,&x>3\
\end
\[\begin{split}
\cos 2x&=\cos^2x-\sin^2x\\
&=2\cos^2-1
\end{split}
\]
\begin{split}
\cos 2x&=\cos2x-\sin2x\
&=2\cos^2-1
\end