LaTeX公式

\[\to\qquad \gets\qquad \left\vert a \right\vert\qquad \lVert a \rVert\qquad \mathrm{d}t \qquad\partial t\qquad \nabla\psi\\ \]

\to \gets\qquad \left\vert a \right\vert \lVert a \rVert\qquad \mathrm{d}t \qquad\partial t\qquad \nabla\psi

\[x^2\qquad x_2\qquad x^{32}_{23}\\ \]

x^2 x_2 x^{32}_

\[\cdot\qquad \neq\qquad \equiv\qquad \bmod\\ \pm,\mp,\times,\div,\otimes,\odot,\oplus,\ominus,\bigoplus\\ \varnothing,\in,\notin,\ni,\not\ni\\ \cap,\cup,\subset,\supset,\supseteq,\subseteqq,\subsetneqq\\ \sim,\cong\\,\ll,\gg,\le,\ge,\leqslant,\geqslant\\ \forall,\exists,\therefore,\because\\ \and,\And,\or,\O,\binom{a}{b},\dbinom{n}{n-r},\mathrm{G}\\ \]

\cdot \neq \equiv \bmod
\pm,\mp,\times,\div,\otimes,\odot,\oplus,\ominus,\bigoplus\
\varnothing,\in,\notin,\ni,\not\ni
\cap,\cup,\subset,\supset,\supseteq,\subseteqq,\subsetneqq\
\sim,\cong\,\ll,\gg,\le,\ge,\leqslant,\geqslant
\forall,\exists,\therefore,\because
\and,\And,\or,\O,\binom{a}{b},\dbinom{n}{n-r},\mathrm{G}\

\[\sqrt{x}\qquad \sqrt[n]{x}\qquad \sqrt{x^2+\sqrt{y}}\\ \]

\sqrt{x} \sqrt[n]{x} \sqrt{x^2+\sqrt{y}}

\[\frac{x}{y}\qquad \bar x\qquad \hat x\qquad \widetilde x\qquad \overline{x}\qquad \underline{y}\\ \]

\frac{x}{y}\qquad \bar x\qquad \hat x\qquad \widetilde x\qquad \overline{x}\qquad \underline{y}\

\[\dot{a},\ddot{a},\acute{a},\grave{a},\check{a},\breve{a} \]

\dot{a},\ddot{a},\acute{a},\grave{a},\check{a},\breve

\[\overbrace{1+2+\cdots+n}^{n个}\qquad \underbrace{1+2+\dots+n}_{26}\\ \]

\overbrace{1+2+\cdots+n}^{n个}\qquad \underbrace{1+2+\dots+n}_{26}\

\[\vec{a}\qquad \overrightarrow{AB}\qquad \overleftarrow{CD}\\ \]

\vec{a}\qquad \overrightarrow{AB}\qquad \overleftarrow{CD}\

\[\lim_{x\to0}\qquad \infty\qquad \int_{0}^{1}\qquad y'\\ \]

\lim_{x\to0}\qquad \infty\qquad \int_{0}^{1}\qquad y'\

\[\sum_{i=1}^{n}x_i\qquad \prod_{i=1}^{n}x_i\qquad \displaystyle\sum_{i=1}^{n}x_i\\ \]

\sum_{i=1}^{n}x_i\qquad \prod_{i=1}^{n}x_i\qquad
\displaystyle\sum_{i=1}^{n}x_i\

\[\alpha\qquad\beta\qquad\gamma\qquad\mu\qquad\sigma\qquad\varepsilon\qquad\theta\qquad\chi\qquad\zeta\qquad\tau\\ \]

\alpha\qquad\beta\qquad\gamma\qquad\mu\qquad\sigma\qquad\varepsilon\qquad\theta\qquad\chi\qquad\zeta\qquad\tau\

\[\eta\qquad\rho\qquad\xi\qquad\psi\qquad\pi\qquad\phi\qquad\nu\qquad\omega\qquad\varrho\qquad\lambda\\ \]

\eta\qquad\rho\qquad\xi\qquad\psi\qquad\pi\qquad\phi\qquad\nu\qquad\omega\qquad\varrho\qquad\lambda\

\[\epsilon\qquad\iota\qquad\varpi\qquad\vartheta\qquad\varphi\qquad\varsigma\qquad\kappa\qquad\delta\qquad\upsilon\qquad\Gamma\\ \]

\epsilon\qquad\iota\qquad\varpi\qquad\vartheta\qquad\varphi\qquad\varsigma\qquad\kappa\qquad\delta\qquad\upsilon\qquad\Gamma\

\[\Lambda\qquad\Sigma\qquad\Psi\qquad\Delta\qquad\Xi\qquad\Upsilon\qquad\Omega\qquad\Theta\qquad\Pi\qquad\Phi\\ \]

\Lambda\qquad\Sigma\qquad\Psi\qquad\Delta\qquad\Xi\qquad\Upsilon\qquad\Omega\qquad\Theta\qquad\Pi\qquad\Phi\

\[\ldots\qquad\cdots\qquad\vdots\qquad\ddots\\ \]

\ldots\qquad\cdots\qquad\vdots\qquad\ddots\

matrix bmatrix vmatrix pmatrix

\[\begin{matrix} 1&2\\ 3&4\\ \end{matrix}\qquad \begin{bmatrix} 1&2\\ 3&4\\ \end{bmatrix}\qquad \begin{vmatrix} 1&2\\ 3&4\\ \end{vmatrix}\qquad \begin{pmatrix} 1&2\\ 3&4\\ \end{pmatrix}\\ \]

\begin{matrix}
1&2\
3&4\
\end{matrix}\qquad
\begin{bmatrix}
1&2\
3&4\
\end{bmatrix}\qquad
\begin{vmatrix}
1&2\
3&4\
\end{vmatrix}\qquad
\begin{pmatrix}
1&2\
3&4\
\end{pmatrix}\

\[D(x)=\begin{cases} \lim\limits_{x\to0} \frac{a^x}{b+c},&x<3\\ \pi,&x=3\\ \int_a^{3b}x_{ij}+e^2dx,&x>3\\ \end{cases} \]

D(x)=\begin{cases}
\lim\limits_{x\to0} \frac{a^x}{b+c},&x<3\
\pi,&x=3\
\int_a{3b}x_{ij}+e2dx,&x>3\
\end

\[\begin{split} \cos 2x&=\cos^2x-\sin^2x\\ &=2\cos^2-1 \end{split} \]

\begin{split}
\cos 2x&=\cos2x-\sin2x\
&=2\cos^2-1
\end

posted @ 2022-09-04 18:14  愛摸鱼的猫  阅读(103)  评论(0)    收藏  举报