windows下mcp实战
uv是开发ruff的公司 Astral 前一段时间发布的高性能Python工具,用途是安装python包,以及解析包版本之间的依赖。
pip install uv
#创建项目目录
uv init mcp-client
cd mcp-client
# 创建虚拟环境
uv venv
# windows下激活虚拟环境,linux下使用 source .venv/bin/activate
.venv\Scripts\activate
#安装 MCP SDK
uv add mcp

#创建 MCPClient.py
import asyncio import os import json import sys from typing import Optional from contextlib import AsyncExitStack from openai import OpenAI from dotenv import load_dotenv from mcp import ClientSession, StdioServerParameters from mcp.client.stdio import stdio_client # 加载 .env 文件,确保 API Key 受到保护 load_dotenv() class MCPClient: def __init__(self): """初始化 MCP 客户端""" self.exit_stack = AsyncExitStack() # 从环境变量读取配置 self.openai_api_key = os.getenv("OPENAI_API_KEY") # 读取 OpenAI API Key self.base_url = os.getenv("BASE_URL") # 读取 BASE URL self.model = os.getenv("MODEL") # 读取模型名称 if not self.openai_api_key: raise ValueError("❌ 未找到 OpenAI API Key,请在 .env 文件中设置 OPENAI_API_KEY") # 初始化 OpenAI 客户端 self.client = OpenAI(api_key=self.openai_api_key, base_url=self.base_url) self.session: Optional[ClientSession] = None async def connect_to_server(self, server_script_path: str): """连接到 MCP 服务器并列出可用工具""" # 检查脚本类型 is_python = server_script_path.endswith('.py') is_js = server_script_path.endswith('.js') if not (is_python or is_js): raise ValueError("服务器脚本必须是 .py 或 .js 文件") # 根据脚本类型选择执行命令 command = "python" if is_python else "node" server_params = StdioServerParameters( command=command, args=[server_script_path], env=None ) # 启动 MCP 服务器并建立通信 stdio_transport = await self.exit_stack.enter_async_context( stdio_client(server_params) ) self.stdio, self.write = stdio_transport self.session = await self.exit_stack.enter_async_context( ClientSession(self.stdio, self.write) ) await self.session.initialize() # 列出 MCP 服务器上的工具 response = await self.session.list_tools() tools = response.tools print("\n已连接到服务器,支持以下工具:", [tool.name for tool in tools]) async def process_query(self, query: str) -> str: """ 使用大模型处理查询并调用可用的 MCP 工具 (Function Calling) """ messages = [{"role": "user", "content": query}] # 获取可用工具列表 response = await self.session.list_tools() available_tools = [{ "type": "function", "function": { "name": tool.name, "description": tool.description, "input_schema": tool.inputSchema } } for tool in response.tools] # 调用 OpenAI API response = self.client.chat.completions.create( model=self.model, messages=messages, tools=available_tools ) # 处理返回的内容 content = response.choices[0] if content.finish_reason == "tool_calls": # 如果需要使用工具,解析工具调用 tool_call = content.message.tool_calls[0] tool_name = tool_call.function.name tool_args = json.loads(tool_call.function.arguments) # 执行工具 result = await self.session.call_tool(tool_name, tool_args) print(f"\n\n[Calling tool {tool_name} with args {tool_args}]\n\n") # 将结果存入消息历史 messages.append(content.message.model_dump()) messages.append({ "role": "tool", "content": result.content[0].text, "tool_call_id": tool_call.id, }) # 将结果返回给大模型生成最终响应 response = self.client.chat.completions.create( model=self.model, messages=messages, ) return response.choices[0].message.content return content.message.content async def chat_loop(self): """运行交互式聊天循环""" print("\n🤖 MCP 客户端已启动!输入 'quit' 退出") while True: try: query = input("\n你: ").strip() if query.lower() == 'quit': break response = await self.process_query(query) # 发送用户输入到 OpenAI API print(f"\n🤖 OpenAI: {response}") except Exception as e: print(f"\n⚠️ 发生错误: {str(e)}") async def cleanup(self): """清理资源""" await self.exit_stack.aclose() async def main(): """主函数""" if len(sys.argv) < 2: print("Usage: python client.py <path_to_server_script>") sys.exit(1) client = MCPClient() try: await client.connect_to_server(sys.argv[1]) await client.chat_loop() finally: await client.cleanup() if __name__ == "__main__": asyncio.run(main())
如果是调用本地部署ollama
self.openai_api_key = "ollama" # 读取 OpenAI API Key
self.base_url = "http://127.0.0.1:40118/v1" # 读取 BASE URL
self.model = "qwq:32b" # 读取模型名称
#获取OpenWeather API Key 密钥
https://home.openweathermap.org/api_keys
uv add mcp httpx
uv pip install openai
#编写MCP server 内容
import json import os import httpx from dotenv import load_dotenv from typing import Any from mcp.server.fastmcp import FastMCP load_dotenv() # 初始化 MCP 服务器 mcp = FastMCP("WeatherServer") # OpenWeather API 配置 OPENWEATHER_API_BASE = "https://api.openweathermap.org/data/2.5/weather" API_KEY = os.getenv("API_KEY") # 从环境变量中读取API_KEY USER_AGENT = "weather-app/1.0" async def fetch_weather(city: str) -> dict[str, Any] | None: """ 从 OpenWeather API 获取天气信息。 :param city: 城市名称(需使用英文,如 Beijing) :return: 天气数据字典;若出错返回包含 error 信息的字典 """ params = { "q": city, "appid": API_KEY, "units": "metric", "lang": "zh_cn" } headers = {"User-Agent": USER_AGENT} async with httpx.AsyncClient() as client: try: response = await client.get( OPENWEATHER_API_BASE, params=params, headers=headers, timeout=30.0 ) response.raise_for_status() return response.json() # 返回字典类型 except httpx.HTTPStatusError as e: return {"error": f"HTTP 错误: {e.response.status_code}"} except Exception as e: return {"error": f"请求失败: {str(e)}"} def format_weather(data: dict[str, Any] | str) -> str: """ 将天气数据格式化为易读文本。 :param data: 天气数据(可以是字典或 JSON 字符串) :return: 格式化后的天气信息字符串 """ # 如果传入的是字符串,则先转换为字典 if isinstance(data, str): try: data = json.loads(data) except Exception as e: return f"无法解析天气数据: {e}" # 如果数据中包含错误信息,直接返回错误提示 if "error" in data: return f"⚠️ {data['error']}" # 提取数据时做容错处理 city = data.get("name", "未知") country = data.get("sys", {}).get("country", "未知") temp = data.get("main", {}).get("temp", "N/A") humidity = data.get("main", {}).get("humidity", "N/A") wind_speed = data.get("wind", {}).get("speed", "N/A") # weather 可能为空列表,因此用 [0] 前先提供默认字典 weather_list = data.get("weather", [{}]) description = weather_list[0].get("description", "未知") return ( f"🌍 {city}, {country}\n" f"🌡 温度: {temp}°C\n" f"💧 湿度: {humidity}%\n" f"🌬 风速: {wind_speed} m/s\n" f"🌤 天气: {description}\n" ) @mcp.tool() async def query_weather(city: str) -> str: """ 输入指定城市的英文名称,返回今日天气查询结果。 :param city: 城市名称(需使用英文) :return: 格式化后的天气信息 """ data = await fetch_weather(city) return format_weather(data) if __name__ == "__main__": # 以标准 I/O 方式运行 MCP 服务器 mcp.run(transport='stdio')
#运行
uv run MCPClient.py server.py


浙公网安备 33010602011771号