银行风险控制模型的对比
银行风险控制模型
一:读取数据
import pandas as pd inputfile = 'E:/python/bankloan.xls' data = pd.read_excel(inputfile) print (data.head())

逻辑回归模型~sklearn
X = data.drop(columns='违约') y = data['违约'] from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=1) model = LogisticRegression() model.fit(X_train, y_train) y_pred = model.predict(X_test) print(y_pred)

准确率与混淆矩阵
from sklearn.metrics import accuracy_score score = accuracy_score(y_pred, y_test) print(score)

混淆矩阵
def cm_plot(y, y_pred): from sklearn.metrics import confusion_matrix #导入混淆矩阵函数 cm = confusion_matrix(y, y_pred) #混淆矩阵 import matplotlib.pyplot as plt #导入作图库 plt.matshow(cm, cmap=plt.cm.Greens) #画混淆矩阵图,配色风格使用cm.Greens,更多风格请参考官网。 plt.colorbar() #颜色标签 for x in range(len(cm)): #数据标签 for y in range(len(cm)): plt.annotate(cm[x,y], xy=(x, y), horizontalalignment='center', verticalalignment='center') plt.ylabel('True label') #坐标轴标签 plt.xlabel('Predicted label') #坐标轴标签 return plt cm_plot(y_test, y_pred)

BP神经网络~Keras
import pandas as pd from keras.models import Sequential from keras.layers.core import Dense, Activation import numpy as np # 参数初始化 inputfile = 'E:/python/bankloan.xls' data = pd.read_excel(inputfile) x_test = data.iloc[:,:8].values y_test = data.iloc[:,8].values inputfile = 'E:/python/bankloan.xls' data = pd.read_excel(inputfile) x_test = data.iloc[:,:8].values y_test = data.iloc[:,8].values model = Sequential() # 建立模型 model.add(Dense(input_dim = 8, units = 8)) model.add(Activation('relu')) # 用relu函数作为激活函数,能够大幅提供准确度 model.add(Dense(input_dim = 8, units = 1)) model.add(Activation('sigmoid')) # 由于是0-1输出,用sigmoid函数作为激活函数 model.compile(loss = 'mean_squared_error', optimizer = 'adam') # 编译模型。由于我们做的是二元分类,所以我们指定损失函数为binary_crossentropy,以及模式为binary # 另外常见的损失函数还有mean_squared_error、categorical_crossentropy等,请阅读帮助文件。 # 求解方法我们指定用adam,还有sgd、rmsprop等可选 model.fit(x_test, y_test, epochs = 1000, batch_size = 10) predict_x=model.predict(x_test) classes_x=np.argmax(predict_x,axis=1) yp = classes_x.reshape(len(y_test)) def cm_plot(y, yp): from sklearn.metrics import confusion_matrix cm = confusion_matrix(y, yp) import matplotlib.pyplot as plt plt.matshow(cm, cmap=plt.cm.Greens) plt.colorbar() for x in range(len(cm)): for y in range(len(cm)): plt.annotate(cm[x,y], xy=(x, y), horizontalalignment='center', verticalalignment='center') plt.ylabel('True label') plt.xlabel('Predicted label') return plt cm_plot(y_test,yp).show()# 显示混淆矩阵可视化结果 score = model.evaluate(x_test,y_test,batch_size=128) # 模型评估 print(score)

两个模型对比差不多,总体来看神经网络更好一点

浙公网安备 33010602011771号