证明-整数与实数


 1. 仅用公理(1)-(5)证明\(\mathbb{R}\)的下述“代数定律”:
 (a) 若\(x+y=x\),则\(y=0\)
 (b) \(0\cdot x=0\)
 (c) \(-0=0\)
 (d) \(-(-x)=x\)
 (e) \(x(-y)=-(xy)=(-x)y\)
 (f) \((-1)x=-x\)
 (g) \(x(y-z)=xy-xz\)
 (h) \(-(x+y)=-x-y\)\(-(x-y)=-x+y\)
 (i) 若\(x\ne 0\)并且\(x\cdot y=x\),则\(y=1\)
 (j) 若\(x\ne 0\),则\(x/x=1\)
 (k) \(x/1 = x\)
 (l) \(x\ne 0\)并且\(y\ne 0\Longrightarrow xy\ne 0\)
 (m) 若\(y,z\ne 0\),则\((1/y)(1/z)=1/(yz)\)
 (n) 若\(y,z\ne 0\),则\((x/y)(w/z)=(xw)/(yz)\)
 (o) 若\(y,z\ne 0\),则\((x/y)+(w/z)=(xz+wy)/(yz)\)
 (p) \(x\ne 0\Longrightarrow 1/x\ne 0\)
 (q) 若\(w,z\ne 0\),则\(1/(w/z)=z/w\)
 (r) 若\(y,w,z\ne 0\),则\((x/y)/(w/z)=(xz)/(yw)\)
 (s) 若\(y\ne 0\),则\((ax)/y = a(x/y)\)
 (t) 若\(y\ne 0\),则\((-x)/y=x/(-y)=-(x/y)\)

证明 (a) \(x+y=x\Longrightarrow (x+y)+(-x)=x+(-x)\Longrightarrow (y+x)+(-x)=0\Longrightarrow y+(x+(-x))=0\Longrightarrow y+0=0\Longrightarrow y=0\)

 (b) \(x\cdot(x+0) = x\cdot x\Longrightarrow (x\cdot x) + (x\cdot 0) = x\cdot x\),结合(a)可知\(x\cdot 0=0\cdot x=0\)

 (c) \(-0=(-0)+0=0+(-0)=0\)

 (d) \(x+(-x)=0\Longrightarrow (-x)+x=0\Longrightarrow -(-x)=x\)

 (e) \(xy + x(-y)= x(y + (-y))= x\cdot 0 = 0\)\(xy+(-x)y=yx+y(-x)=y(x+(-x))=y\cdot 0 = 0\),故\(x(-y)=-(xy)=(-x)y\)

 (f) \(x + (-1)x = (x\cdot 1) + (x\cdot (-1)) = x(1 + (-1)) = x\cdot 0 = 0\),故\((-1)x = -x\)

 (g) \(x(y-z) = x(y+(-z))=xy+x(-z)=xy+(-(xz))=xy-xz\);

 (h) \(-(x+y) = (-1)(x+y)=(-1)x + (-1)y = (-x)+(-y) = -x-y\)\(-(x-y)=(-1)(x + (-y))= (-1)x + (-1)(-y) = -x + (-(-y)) = -x + y\)

 (i) \(x\cdot y = x\Longrightarrow (x\cdot y)\cdot (1/x) = x\cdot (1/x)\Longrightarrow (y\cdot x)\cdot (1/x) = 1 \Longrightarrow y\cdot(x\cdot (1/x))=1\Longrightarrow y\cdot 1 = 1\Longrightarrow y = 1\)

 (j) \(x/x = x\cdot (1/x) = 1\)

 (k) \(1/1 = (1/1)\cdot 1 = 1\cdot (1/1) = 1\),故\(x/1 = x\cdot (1/1) = x\cdot 1 = x\)

 (l) 若\(xy=0\),则\(0 = (1/x)\cdot 0 = (1/x)\cdot (xy) = ((1/x)\cdot x)y =(x \cdot (1/x))y = 1\cdot y = y\cdot 1 = y\),与\(y\ne 0\)矛盾;

 (m) \((yz)\cdot((1/y)(1/z))=((yz)\cdot(1/y))(1/z)=((zy)\cdot(1/y))(1/z)=(z(y\cdot (1/y)))(1/z)=(z\cdot 1)(1/z) = z\cdot (1/z) = 1\)。故\((1/y)(1/z)=1/(yz)\)

 (n) \((x/y)(w/z)=(x\cdot(1/y))(w\cdot (1/z)) = x((1/y)(w\cdot(1/z))) = x(((1/y)\cdot w)(1/z)) = x((w\cdot(1/y))(1/z)) = x(w((1/y)\cdot(1/z))) = x(w\cdot (1/(yz)))=(xw)\cdot(1/(yz)) = (xw)/(yz)\)

 (o) \((x/y) + (w/z) = ((x/y)\cdot 1) + ((w/z)\cdot 1) = ((x/y)\cdot(z/z)) + ((w/z)\cdot(y/y))=((xz)/(yz)) + ((wy)/(zy)) = ((xz)\cdot (1/(yz))) + ((wy)\cdot(1/(yz))) = ((1/(yz))\cdot (xz)) + ((1/(yz))\cdot(wy)) = (1/(yz))\cdot (wy + xz) = (wy + xz) \cdot (1/(yz)) = (xz + wy)/(yz)\)

 (p) 若\(1/x=0\),则\(1=x\cdot (1/x) = x\cdot 0 = 0\),矛盾;

 (q) \((w/z)\cdot(z/w) = (wz)/(zw) = (wz)/(wz) = 1\),故\(1/(w/z)=z/w\)

 (r) \((x/y)/(w/z)=(x/y)\cdot(1/(w/z)) = (x/y)\cdot(z/w) = (xz)/(yw)\)

 (s) \((ax)/y=(ax)/(y\cdot 1) = (ax)/(1\cdot y) = (a/1)\cdot (x/y) = a(x/y)\)

 (t) \((-x)/y = ((-1)x)/y = (-1)(x/y) = -(x/y)\)。又\((-1)\cdot(-1) = -(-1) = 1\Longrightarrow 1/(-1) = -1\),那么有\(x/(-y) = (x\cdot 1)/((-1)y)=(1\cdot x)/((-1)y) = (1/(-1))\cdot(x/y)=(-1)(x/y)=-(x/y)\)。故\((-x)/y=x/(-y)=-(x/y)\)

$\square$

 2. 应用公理(1)-(6)以及“代数定律”中的那些结论,证明关于\(\mathbb{R}\)的“不等式法则”:
 (a) \(x>y\)\(w>z\Longrightarrow x+w>y+z\)
 (b) \(x>0\)\(y>0\Longrightarrow x+y>0\)\(x\cdot y > 0\)
 (c) \(x>0\iff -x < 0\)
 (d) \(x>y\iff -x < -y\)
 (e) \(x>y\)\(z<0\Longrightarrow xz<yz\)
 (f) \(x\ne 0\Longrightarrow x^2>0\),其中\(x^2=x\cdot x\)
 (g) \(-1<0<1\)
 (h) \(xy>0\iff x\)\(y\)同为正数或同为负数;
 (i) \(x>0\Longrightarrow 1/x>0\)
 (j) \(x>y>0\Longrightarrow 1/x<1/y\)
 (k) \(x<y\Longrightarrow x<(x+y)/2<y\)

证明 (a) \(x+w > y+w = w + y > z + y = y+z\)
 (b) 由(a)可知\(x+y>0+0=0\)\(x\cdot y>0\cdot y = y\cdot 0 = 0\)
 (c) \(x>0\Longrightarrow x+(-x) = 0>0+(-x) = (-x) + 0 = -x\)\(-x < 0\Longrightarrow -x + x = x + (-x) = 0 < 0 + x = x+ 0 =x\)
 (d) \(x>y\Longrightarrow x + (-x) = 0 > y + (-x) \Longrightarrow 0 + (-y) = (-y) + 0 =-y > (y + (-x))+(-y) =((-x)+y)+(-y)=(-x)+(y+(-y))=(-x)+0=-x\)\(-x<-y\Longrightarrow -x + x = x + (-x) = 0 < -y + x\Longrightarrow 0 + y = y + 0 = y < (-y + x) + y = (x + (-y))+y = x+((-y) + y) = x+ (y+(-y)) = x + 0 = x\)
 (e) \(z<0\Longrightarrow -z >0\),故结合(d)可知\(x>y\Longrightarrow x(-z)=-(xz)>y(-z)=-(yz) \Longrightarrow yz > xz\)
 (f) \(x\ne 0\Longrightarrow x>0或x<0\)。由(b)可知\(x>0\Longrightarrow x\cdot x = x^2 > 0\),由(e)可知\(x<0\Longrightarrow x\cdot x =x^2 > 0\cdot x = x\cdot 0 = 0\)。故\(x\ne 0\Longrightarrow x^2>0\),其中\(x^2=x\cdot x\)
 (g) 由(f)可知\(1^2 = 1\cdot 1 = 1 > 0\),结合(c)可知\(-1 < 0\),故\(-1<0<1\)
 (h) 若\(x\)\(y\)有一个为零,显然\(xy=0\),矛盾。若\(x>0\)\(y<0\),则由(e)可知\(xy < 0\cdot y = y\cdot 0 = 0\),矛盾。若\(x<0\)\(y>0\),则由(e)可知\(xy=yx < 0\cdot x = x\cdot 0 = 0\),矛盾;
 (i) 有\(x\cdot (1/x)=1>0\),且\(x>0\)。结合(h)可知\(1/x > 0\)
 (j) 由(i)可知\(1/x>0\)\(1/y>0\)。故\(x>y\Longrightarrow x\cdot(1/x) = 1>y\cdot(1/x) = (1/x)\cdot y\Longrightarrow 1\cdot (1/y) = (1/y)\cdot 1 = 1/y > ((1/x)\cdot y)(1/y) = (1/x)(y\cdot (1/y)) = (1/x)\cdot 1 = 1/x\)
 (k) 由(g)可知\(-1<1\),故\(-1+1 = 1+(-1) = 0 < 1 + 1 = 2\),结合(i)可知\(1/2>0\)\(x<y\Longrightarrow x + x = (x\cdot 1) + (x\cdot 1) = x(1+1) = x\cdot 2 < y+x=x+y\Longrightarrow (x\cdot 2)(1/2) = x(2\cdot (1/2)) = x\cdot 1 = x < (x+y)(1/2)=(x+y)/2\)。又\(x<y\Longrightarrow x+y<y+y = (y\cdot 1) + (y\cdot 1) = y(1+1)=y\cdot 2\Longrightarrow (x+y)(1/2)=(x+y)/2<(y\cdot 2)(1/2)=y(2\cdot(1/2))=y\cdot 1 = y\)。故\(x<y\Longrightarrow x<(x+y)/2<y\)

$\square$

 3. 证明\(\mathbb{Z}_+\)满足以下基本性质:
 (1) \(\mathbb{Z}_+\)是归纳集;
 (2) (归纳原理)若\(A\)是包含\(1\)的正整数的一个归纳集,则\(A=\mathbb{Z}_+\)

证明 (1) 由归纳集和\(\mathbb{Z}_+\)的定义可知,\(1\in \mathbb{Z}_+\)。若\(n\in \mathbb{Z}_+\),则\(n\)属于任意一个归纳集,从而\(n+1\)也属于任意一个归纳集,故\(n+1\in \mathbb{Z}_+\)。由此可知\(\mathbb{Z}_+\)为归纳集。

 (2) 由\(\mathbb{Z}_+\)的定义可知\(\mathbb{Z}_+\subset A\)。又\(A\)的元素均为正整数,故\(A\subset\mathbb{Z}_+\)。那么有\(A=\mathbb{Z}_+\)

$\square$

 4. 证明两个正整数的和、积仍是正整数。

证明 定义\(A\)

\[A=\{x|x\in\mathbb{Z}_+,\text{且对任意}m\in\mathbb{Z}_+,m+x\in\mathbb{Z}_+\} \]

 由\(\mathbb{Z}_+\)的归纳性可知,\(1\in A\)

 若\(n\in A\),则对任意\(m\in\mathbb{Z}_+\)\(m+n\in\mathbb{Z}_+\),结合\(\mathbb{Z}_+\)的归纳性可知\((m+n)+1 = m+(n+1)\in\mathbb{Z}_+\)。故\(n+1\in A\)

 由归纳原理可知\(A=\mathbb{Z}_+\),两个正整数的和仍是正整数。

 类似地,我们定义\(B\)

\[B=\{x|x\in\mathbb{Z}_+,\text{且对任意}m\in\mathbb{Z}_+,m\cdot x\in\mathbb{Z}_+\} \]

 由\(1\)的乘法性质可知,\(1\in B\)

 若\(n\in B\),则对任意\(m\in\mathbb{Z}_+\)\(m\cdot n\in\mathbb{Z}_+\),结合正整数和的封闭性可知\(m\cdot(n+1) = m\cdot n + m\cdot 1 = m\cdot n + m\in\mathbb{Z}_+\)。故\(n+1\in B\)

 由归纳原理可知\(B=\mathbb{Z}_+\),两个正整数的积仍是正整数。

$\square$

 5. 证明\(n\in\mathbb{Z}_+\Longrightarrow n-1\in\mathbb{Z}_+\cup \{0\}\)

证明 定义\(A\)

\[A=\{n|n-1\in\mathbb{Z}_+\cup\{0\},n\in\mathbb{Z}_+\} \]

 由\(1-1 = 0\)可知\(1\in A\)

 若\(n\in A\),则\(n-1 = 0\)\(n-1\in \mathbb{Z}_+\)。当\(n-1=0\)时,\((n+1)-1 = n = 1\in \mathbb{Z}_+\cup\{0\}\)。当\(n-1\in\mathbb{Z}_+\)时,\((n+1)-1 = (n-1)+1\in\mathbb{Z}_+\cup\{0\}\)

 由归纳原理可知\(A=\mathbb{Z}_+\),那么有\(n\in\mathbb{Z}_+\Longrightarrow n-1\in\mathbb{Z}_+\cup \{0\}\)

$\square$

 6. 证明两个整数的和、差、积仍是整数。

证明 设\(n\in\mathbb{Z}_+\),那么每个整数可以唯一表示为\(n\)\(0\)\(-n\)。下面就这三种情况进行讨论。

 先证明若\(m,n\in\mathbb{Z}_+\)\(m-n>0\),那么\(m-n\in\mathbb{Z}_+\)

 设\(A\)为使得上述论断满足的所有\(n\)的集合,则由5可知\(m-1\in\mathbb{Z}_+\cup\{0\}\)。又\(m-1>0\),那么\(m-1\in\mathbb{Z}_+\),故\(1\in A\)

 若\(n\in A\),那么\(m-n\in\mathbb{Z}_+\)。由5可知\(m-(n+1) = m-n-1\in\mathbb{Z}_+\cup\{0\}\)。又\(m-(n+1)=m-n-1>0\),那么\(m-n-1\in\mathbb{Z}_+\),故\(n+1\in A\)

 由归纳原理可知\(A=\mathbb{Z}_+\),原论断得证。

 现讨论整数的和。对于两个正整数\(m,n\),由4可知\(m+n\in\mathbb{Z}_+\subset \mathbb{Z}\)

 若其中一个整数为零,则和显然为整数。

 若其中一个为正整数\(m\),另一个为负整数\(-n\),那么其和为\(m-n\)。若\(m-n>0\),则由前面证明的论断可知\(m-n\in\mathbb{Z}_+\subset \mathbb{Z}\),若\(m-n = 0\),其显然属于\(\mathbb{Z}\)。若\(m-n<0\),则\(n-m>0\)\(n-m\in\mathbb{Z}_+\),故\(m-n=-(n-m)\in \mathbb{Z}\)

 若两个整数均为负整数\(-m,-n\),那么有\(-m+(-n) = -(m+n)\)。由4可知\(m+n\in\mathbb{Z}_+\),故\(-(m+n)\in\mathbb{Z}\)

 综上可知两个整数之和仍为整数。

 对于两个整数之差,只需注意到整数的相反数仍是整数(可按照\(n\)\(0\)\(-n\)分类讨论),转化为两个整数之和即可证明。

 现考虑两个整数之积。对于两个正整数\(m,n\),由4可知\(mn\in\mathbb{Z}_+\subset \mathbb{Z}\)

 若其中一个整数为0,则积一定为0,显然是整数。

 若两个整数均为负整数\(-m,-n\),结合4可知\((-m)(-n)=mn\in\mathbb{Z}_+\subset \mathbb{Z}\)

 综上可知两个整数之积仍为整数。

$\square$

 7. 对于给定的整数\(n\),不存在满足\(n<a<n+1\)的整数\(a\)

证明 若满足\(n<a<n+1\)的整数\(a\)存在,那么\(0<a-n<1\),且由6可知\(a-n\in\mathbb{Z}\)。由整数定义可知\(a-n\in\mathbb{Z}_+\),而这与\(\mathbb{Z}_+\)的最小元为1矛盾。

$\square$

 8. 对于任意正实数,证明其存在唯一的正平方根。

证明 设\(x\)为一个实数,且\(x\geqslant 0\)。若\(x^2 < a\),下面证明存在\(h>0\),使得\((x+h)^2 < a\)

 设\(h = \min\{(a - x^2)/(2x+1), 1/2\}>0\),那么有\((x+h)^2 - a = x^2 + 2hx + h^2 - a < x^2 + 2hx + h - a = x^2 + h(2x+1) -a \leqslant 0\),故\((x+h)^2 < a\)

 设\(x\)为一个实数,且\(x>0\)。若\(x^2 > a > 0\),下面证明存在\(h>0\),使得\(x-h>0\)\((x-h)^2 > a\)

 设\(h=(x^2 -a)/(4x)>0\),那么有\(x-h = (3x^2 + a)/(4x) > 0\)\((x-h)^2 - a = x^2 - 2hx +h^2 - a \geqslant x^2 - a - 2hx = (x^2 - a)/2 > 0\),故\((x-h)^2 > a\)

 对任意正实数\(a\),设\(A=\{x|x^2 < a,x\in\mathbb{R}\}\)。显然有\(0\in A\),故\(A\)不为空集。又\(x\geqslant a+1 \Longrightarrow x^2 \geqslant (a+1)^2 = a^2+2a + 1 > a\),故\(A\)存在上界\(a+1\)。由\(\mathbb{R}\)的上确界性质可知,存在\(b = \sup A\)。由前面所证可知,存在\(h>0\),使得\((0+h)^2=h^2 < a\),故\(b\geqslant h > 0\)。下面证明\(b^2 = a\)

 若\(b^2 < a\),则由前面所证可知,存在\(h>0\),使得\((b+h)^2 < a\),这说明\(A\)的上界必大于等于\(b+h\),上确界\(b\)也应大于等于\(b+h\),矛盾。

 若\(b^2 > a\),则由前面所证可知,存在\(h>0\),使得\((b-h)^2 > a\)\(b-h>0\),则对于任意\(x\geqslant b-h>0\)\(x^2 \geqslant x(b-h) \geqslant (b-h)^2 > a\)。这说明\(A\)存在比\(b\)小的上界\(b-h\),与\(b=\sup A\)矛盾。

 综上可知,\(b^2 = a\)

 若\(c^2 = a\)\(c>0\)\(b\ne c\)。那么,有\(b^2-c^2 = (b+c)(b-c) = 0\)。又\(b+c > 0\),故\(b-c=0\Longrightarrow b = c\)。由此可知,满足\(b>0\)\(b^2=a\)\(b\)是唯一的。

$\square$

posted @ 2025-07-11 20:16  极大理想  阅读(12)  评论(0)    收藏  举报