证明-基本概念
1. 验证“分配律”
\[A\cap(B\cup C) = (A\cap B)\cup(A\cap C)
\]
\[A\cup(B\cap C) = (A\cup B)\cap(A\cup C)
\]
和DeMorgan律
\[A - (B\cup C) = (A - B)\cap (A - C)
\]
\[A - (B\cap C) = (A - B)\cup (A - C)
\]
证明
$$x\in A\cap(B\cup C)\iff x\in B\text{或}x\in C,\text{且}x\in A\iff x\in A\text{且}x\in B,\text{或}x\in A\text{且}x\in C\iff x\in (A\cap B)\cup(A\cap C)$$
$$x\in A\cup(B\cap C)\iff x\in A,\text{或}x\in B\text{且}x\in C\iff x\in A\text{或}x\in B,\text{且}x\in A\text{或}x\in C\iff x\in (A\cup B)\cap(A\cup C)$$
$$\begin{gather*}
x\in A - (B\cup C)\iff x\in A,\text{且}x\notin B\cup C\iff x\in A,\text{且}x\notin B\text{且}x\notin C\iff\\
x\in A\text{且}x\notin B,\text{且}x\in A\text{且}x\notin C\iff x\in(A - B)\cap (A - C)
\end{gather*}$$
$$\begin{gather*}
x\in A - (B\cap C)\iff x\in A,\text{且}x\notin B\cap C\iff x\in A,\text{且}x\notin B\text{或}x\notin C\iff\\
x\in A\text{且}x\notin B,\text{或}x\in A\text{且}x\notin C\iff x\in(A - B)\cup (A - C)
\end{gather*}$$
$\square$

浙公网安备 33010602011771号