hello world!

 第一篇博文,先来试验一下公式

\[\displaystyle\sum_{n=1}^{\infty}\frac{1}{n^2}=\frac{\pi^2}{6}\]

\begin{align}
  (a + b)^3  &= (a + b) (a + b)^2        \\
             &= (a + b)(a^2 + 2ab + b^2) \\
             &= a^3 + 3a^2b + 3ab^2 + b^3
\end{align}
\begin{align}
  x^2  + y^2 & = 1                       \\
  x          & = \sqrt{1-y^2}
\end{align}
This example has two column-pairs.
\begin{align}    \text{Compare }
  x^2 + y^2 &= 1               &
  x^3 + y^3 &= 1               \\
  x         &= \sqrt   {1-y^2} &
  x         &= \sqrt[3]{1-y^3}
\end{align}

 

 $x^2+y^2=1$ $\xi$
$\dfrac{1}{5}$ $\dfrac{4}{5}$


This example has three column-pairs.
\begin{align}
    x    &= y      & X  &= Y  &
      a  &= b+c               \\
    x'   &= y'     & X' &= Y' &
      a' &= b                 \\
  x + x' &= y + y'            &
  X + X' &= Y + Y' & a'b &= c'b
\end{align}


posted @ 2015-09-21 23:39  zhaowanlong  阅读(161)  评论(0)    收藏  举报