hello world!
第一篇博文,先来试验一下公式
\[\displaystyle\sum_{n=1}^{\infty}\frac{1}{n^2}=\frac{\pi^2}{6}\]
\begin{align}
(a + b)^3 &= (a + b) (a + b)^2 \\
&= (a + b)(a^2 + 2ab + b^2) \\
&= a^3 + 3a^2b + 3ab^2 + b^3
\end{align}
\begin{align}
x^2 + y^2 & = 1 \\
x & = \sqrt{1-y^2}
\end{align}
This example has two column-pairs.
\begin{align} \text{Compare }
x^2 + y^2 &= 1 &
x^3 + y^3 &= 1 \\
x &= \sqrt {1-y^2} &
x &= \sqrt[3]{1-y^3}
\end{align}
| $x^2+y^2=1$ | $\xi$ |
| $\dfrac{1}{5}$ | $\dfrac{4}{5}$ |
This example has three column-pairs.
\begin{align}
x &= y & X &= Y &
a &= b+c \\
x' &= y' & X' &= Y' &
a' &= b \\
x + x' &= y + y' &
X + X' &= Y + Y' & a'b &= c'b
\end{align}

浙公网安备 33010602011771号