Loading

高中数学之比较大小

例1\(\quad\)已知\(a=0.7e^{0.4}\)\(b=e\ln{1.4}\)\(c=0.98\),则\(a\)\(b\)\(c\)的大小关系是(A
A.\(\;a>c>b\)\(\quad\) B.\(\;b>a>c\)\(\quad\) C.\(\;b>c>a\)\(\quad\) D.\(\;c>a>b\)
解析:因为\(\ln{x}<\displaystyle\frac{1}{e}x\)\(x>0\)\(x\neq e\)),所以

\[\ln{x^2}<\frac{x^2}{e}\Rightarrow2\ln{x}<\frac{x^2}{e}\Rightarrow\ln{x}<\frac{x^2}{2e}\Rightarrow\ln{2x}<\frac{(2x)^2}{2e}=\frac{2}{e}x^2 \]

\(x=0.7\)时,\(\ln{1.4}<\displaystyle\frac{2}{e}(0.7)^2=\displaystyle\frac{0.98}{e}\Rightarrow e\ln{1.4}<0.98\),所以\(b<c\).
因为\(e^{x-1}>x\Rightarrow e^{2x-1}>2x\),令\(x=0.7\),则\(e^{0.4}>1.4\Rightarrow0.7e^{0.4}>0.98\),所以\(a>c\).
综上,\(a>c>b\).

例2\(\quad\)已知\(a=\log _23\)\(b=2\cos 36^\circ\)\(c=\sqrt 2\),则\(a\)\(b\)\(c\)的大小关系是(B
A.\(\;b>c>a\)\(\quad\) B.\(\;b>a>c\)\(\quad\) C.\(\;a>b>c\)\(\quad\) D.\(\;a>c>b\)
解析:由于\(\cos 36^\circ>\cos 45^\circ\),可得\(2\cos 36^\circ>\sqrt 2\),即\(b>c\).
因为\(\displaystyle{2^\sqrt 2<2^\frac{3}{2}=2\sqrt 2<3<2^{\log _23}}\),所以\(\log _23<\sqrt 2\),即\(c<a\).
由于\(\displaystyle{3^5<2^8}\)\(5\ln 3<8\ln 2\)\(\displaystyle{a=\log _23<\frac{8}{5}}\)\(\displaystyle{b=2\cos 36^\circ=2\times\frac{\sqrt 5+1}{4}>1.6}\)
所以\(b>a>c\).

例3\(\quad\)已知\(\displaystyle{a=\frac{1}{4}}\)\(\displaystyle{b=e^{\sin \frac{1}{8}}-1}\)\(\displaystyle{c=\ln \frac{9}{7}}\),则\(a\)\(b\)\(c\)的大小关系是(C
解析:

\[\frac{c}{a}=4\ln \frac{9}{7}=\ln \left(\frac{9}{7}\right)^4=\ln \frac{6561}{2401}>\ln 2.73>1 \]

所以\(c>a\).
\(f(x)=\displaystyle{e^{\sin \frac{x}{2}}-1-x}\)\(\displaystyle{x\in\left(0,\frac{1}{4}\right]}\)),
\(f'(x)=\displaystyle{\frac{1}{2}\cos \frac{x}{2}e^{\sin \frac{x}{2}}-1\leq\frac{1}{2}e^{\sin \frac{x}{2}}-1\leq\frac{1}{2}e^{\frac{x}{2}}-1}\)
\(\displaystyle{x\in\left(0,\frac{1}{4}\right)}\)时,\(f'(x)<0\)\(f(x)\)\(\displaystyle{\left(0,\frac{1}{4}\right)}\)单调递减,\(\displaystyle{f(\frac{1}{4})<f(0)=0}\),所以\(\displaystyle{e^{\sin \frac{1}{8}}-1<\frac{1}{4}}\),即\(b<a\).
综上,\(c>a>b\).

posted @ 2022-11-16 16:28  应急食物  阅读(632)  评论(0)    收藏  举报