高中数学之比较大小
例1\(\quad\)已知\(a=0.7e^{0.4}\),\(b=e\ln{1.4}\),\(c=0.98\),则\(a\),\(b\),\(c\)的大小关系是(A)
A.\(\;a>c>b\)\(\quad\) B.\(\;b>a>c\)\(\quad\) C.\(\;b>c>a\)\(\quad\) D.\(\;c>a>b\)
解析:因为\(\ln{x}<\displaystyle\frac{1}{e}x\)(\(x>0\)且\(x\neq e\)),所以
当\(x=0.7\)时,\(\ln{1.4}<\displaystyle\frac{2}{e}(0.7)^2=\displaystyle\frac{0.98}{e}\Rightarrow e\ln{1.4}<0.98\),所以\(b<c\).
因为\(e^{x-1}>x\Rightarrow e^{2x-1}>2x\),令\(x=0.7\),则\(e^{0.4}>1.4\Rightarrow0.7e^{0.4}>0.98\),所以\(a>c\).
综上,\(a>c>b\).
例2\(\quad\)已知\(a=\log _23\),\(b=2\cos 36^\circ\),\(c=\sqrt 2\),则\(a\),\(b\),\(c\)的大小关系是(B)
A.\(\;b>c>a\)\(\quad\) B.\(\;b>a>c\)\(\quad\) C.\(\;a>b>c\)\(\quad\) D.\(\;a>c>b\)
解析:由于\(\cos 36^\circ>\cos 45^\circ\),可得\(2\cos 36^\circ>\sqrt 2\),即\(b>c\).
因为\(\displaystyle{2^\sqrt 2<2^\frac{3}{2}=2\sqrt 2<3<2^{\log _23}}\),所以\(\log _23<\sqrt 2\),即\(c<a\).
由于\(\displaystyle{3^5<2^8}\),\(5\ln 3<8\ln 2\),\(\displaystyle{a=\log _23<\frac{8}{5}}\),\(\displaystyle{b=2\cos 36^\circ=2\times\frac{\sqrt 5+1}{4}>1.6}\),
所以\(b>a>c\).
例3\(\quad\)已知\(\displaystyle{a=\frac{1}{4}}\),\(\displaystyle{b=e^{\sin \frac{1}{8}}-1}\),\(\displaystyle{c=\ln \frac{9}{7}}\),则\(a\),\(b\),\(c\)的大小关系是(C)
解析:
所以\(c>a\).
令\(f(x)=\displaystyle{e^{\sin \frac{x}{2}}-1-x}\)(\(\displaystyle{x\in\left(0,\frac{1}{4}\right]}\)),
则\(f'(x)=\displaystyle{\frac{1}{2}\cos \frac{x}{2}e^{\sin \frac{x}{2}}-1\leq\frac{1}{2}e^{\sin \frac{x}{2}}-1\leq\frac{1}{2}e^{\frac{x}{2}}-1}\),
当\(\displaystyle{x\in\left(0,\frac{1}{4}\right)}\)时,\(f'(x)<0\),\(f(x)\)在\(\displaystyle{\left(0,\frac{1}{4}\right)}\)单调递减,\(\displaystyle{f(\frac{1}{4})<f(0)=0}\),所以\(\displaystyle{e^{\sin \frac{1}{8}}-1<\frac{1}{4}}\),即\(b<a\).
综上,\(c>a>b\).

浙公网安备 33010602011771号