hdu5358
题目名称:First One
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5358
题意:计算原题中的式子
1.思路:先用sum数组记录a[i] 的前缀和,顺便计算 1*( i + j ) 部分,即 i 算了(n-i+1)次再加上 i +(i+1)+...+n 。因为log2S(i,j) 是向下取整,我们可以看成s(i,j)在[2^(k),2^(k+1))之间时, log2(s(i,j))向下取整的值就是k。假如从 i 开始,每次找出和 i 相差 k 和 k+1 的左右端点,然后把这区间的和的全部值乘以k 就是求log2S(i,j)*(i+j)的值了
代码如下:
#include<cstdio> #include<iostream> #include<cstring> #include<vector> #include<set> #include<queue> #include<cmath> using namespace std; typedef long long ll; const int MAXN=100000+10; ll Scan() { ll res = 0, ch, flag = 0; if((ch = getchar()) == '-') //判断正负 flag = 1; else if(ch >= '0' && ch <= '9') //得到完整的数 res = ch - '0'; while((ch = getchar()) >= '0' && ch <= '9' ) res = res * 10 + ch - '0'; return flag ? -res : res; } ll a[MAXN],sum[MAXN],power[40]; int main() { ll t,n; for(int i=0;i<40;i++) { power[i]=1LL<<i; } t=Scan(); while(t--) { n=Scan(); ll ans=0; sum[0]=0; for(int i=1;i<=n;i++) { a[i]=Scan(); sum[i]=sum[i-1]+a[i]; ans+=1LL*(n+i)*(n-i+1)/2+1LL*i*(n-i+1);//计算式子中的1*(i+j) } for(int i=1;i<40;i++) { if(power[i]>sum[n]) break; ll ss=0; ll L=1,R=0; for(int j=1;j<=n;j++) { while(L<=n&&sum[L]-sum[j-1]<power[i]) //寻找log2的值在i和i+1之间的aj + aj+1 +...ax的最小X为 L和最大X为R L++; while(R+1<=n&&sum[R+1]-sum[j-1]<power[i+1]) R++; if(L<=R) ss+=(R+L)*(R-L+1)/2+j*(R-L+1); //计算 (j+L)+(j+L+1)+...+(j+R) } ans+=ss*i; //计算式子中的(i+j)*log2S(i,j) (式子中 i=log2(i,j)) } printf("%lld\n",ans); } return 0; }
2.思路:先用sum数组保存下i的后缀和,顺便把 1 * ( i + j ) 部分给算了,就是 i 算了(n-i+1)次 加上 每次从i+(i+1)+...+n。因为log2S(i,j) 是向下取整,我们可以看成s(i,j)在[2^(k),2^(k+1))之间时, log2(s(i,j))向下取整的值就是k。计算log2S(i,j)*(i+j),假设k=1,求出在该区间的左端点为 i,右端点为 j,即对于在j后面的数x,总数都加上( i + x ) ;当k=2时,求出 i ,j 因为在k=1时已经加上一次( i + x ) 了,所以只需再加上一次 (本来要*2的)......以此类推。画一下图就可以理解了,比如i -> j1是区间为[2^1,2^2),i -> j2是区间为[2^2,2^3),我们在计算i -> j1 时因为是加上j后面的数,也就是说把i -> j2 的那部分也加上了,所以我们计算时只需再算一次。。。
代码如下:
#include<cstdio> #include<iostream> #include<cstring> #include<string> #include<algorithm> using namespace std; typedef long long LL; const int MAXN=100000+10; LL sum[MAXN],power[40]; int a[MAXN],n; int main() { int T; for(int i=0;i<40;i++) { power[i]=1LL<<i; } scanf("%d",&T); for (int ss=1;ss<=T;ss++) { scanf("%d",&n); for(int i=0;i<n;++i) scanf("%d",&a[i]); LL ans=0; sum[n]=0; for(int i=n-1;i>=0;i--) { sum[i]=sum[i+1]+i+1; //算后缀和 ans+=LL(i+1)*(n-i)+sum[i]; //算(i+j)*1 } for(int k=1;k<=35;k++) { LL s=0; LL j=0; for(int i=0;i<n;i++) { while(j<n&&s<power[k]) { s+=a[j]; j++; } if(s>=power[k]) ans+=1LL*(i+1)*(n-j+1)+sum[j-1]; //算log2(i,j)*(i+j) s-=a[i]; } } printf("%lld\n",ans); } return 0; }
本文版权归作者本人所有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,否则保留追究法律责任的权利.