Spark SQL(九)之基于用户的推荐公式
一、基于用户的推荐公式

其中,S(u,K)表示与用户u最相似的K个用户,N(i)代表喜欢物品i的用户集合,rm表示用户v对物品i的评分。
二、代码
public class UserCFRecommendApp {
public static void main(String[]args){
SparkConf sparkConf = new SparkConf();
sparkConf.setAppName("UserCFRecommendApp");
sparkConf.setMaster("local[*]");
SparkSession sparkSession = SparkSession.builder().config(sparkConf).getOrCreate();
String url = "jdbc:mysql://localhost:3306/spark-mysql?useUnicode=true&characterEncoding=utf8&autoReconnect=true&failOverReadOnly=false";
String driver = "com.mysql.jdbc.Driver";
String user = "root";
String password = "admin";
Dataset<Row> score = sparkSession.read()
.format("jdbc")
.option("driver", driver)
.option("url",url)
.option("dbtable","user_item")
.option("user",user)
.option("password",password)
.load();
Dataset<Row> similar = sparkSession.read()
.format("jdbc")
.option("driver", driver)
.option("url",url)
.option("dbtable","user_similar")
.option("user",user)
.option("password",password)
.load();
//分组 top k
// similar = similar.selectExpr("a_user_id", "b_user_id", "count",
// "ROW_NUMBER() OVER (PARTITION BY a_user_id ORDER BY count DESC) rank")
// .where("rank <= 10");
//similar.show();
Dataset<Row> result = similar.as("us")
.join(score.as("s"), functions.column("us.b_user_id").$eq$eq$eq(functions.column("s.user_id")))
.selectExpr("us.a_user_id user_id", "s.item_id", "us.count * s.score score")
.groupBy("user_id", "item_id").sum("score")
.selectExpr("user_id", "item_id", "`sum(score)` score");
result.show();
// result.write()
// .mode(SaveMode.Overwrite)
// .format("jdbc")
// .option("driver", driver)
// .option("url",url)
// .option("dbtable","user_item_recom")
// .option("user",user)
// .option("password",password)
// .save();
sparkSession.stop();
}
}

浙公网安备 33010602011771号