传闻中的华为Python面试题(原创)
原题:
有两个序列a,b,大小都为n,序列元素的值任意整形数,无序;
要求:通过交换a,b中的元素,使[序列a元素的和]与[序列b元素的和]之间的差最小
限时十分钟以内
尝试解答,coding和debug共用了约1个小时,呵呵,去不了华为了。
获取最小差的函数,还可以优化,现在的时间复杂度是n×n,估计可以优化到n×lg(n)
网上有一种解答方法,认为最小值是负数,排序之后,截成两段,小数序列-大数序列即可。难道,难道,这才是本题十分钟解出的奥义?!
我的代码如下,算法很简单(我的算法不对,请列位看官参考评论中张三的):
'''
Created on 2010-6-21
@author: maodouzi
'''
import random
def getMinSubKeys(leftArray, rightArray):
if (sum(leftArray) > sum(rightArray)):
subArray = leftArray
minuendArray = rightArray
subFlag = True
elif (sum(leftArray) < sum(rightArray)):
subArray = rightArray
minuendArray = leftArray
subFlag = False
else:
return None
minSubNum = (sum(subArray) - sum(minuendArray)) / 2.0
tmpMinSubResult = sum(subArray)
subKey = 0
minuendKey = 0
for i_key, i in enumerate(subArray):
for j_key, j in enumerate(minuendArray):
if (abs(i - j - minSubNum) < tmpMinSubResult):
tmpMinSubResult = abs(i - j - minSubNum)
subKey = i_key
minuendKey = j_key
if (subFlag == True):
return (subKey, minuendKey)
else:
return (minuendKey, subKey)
if __name__ == '__main__':
aa = range(20);
bb = [random.randint(0, 100) for i in aa]
bb.sort(reverse=True)
print aa
print bb
leftArray = []
rightArray = []
while (len(bb)):
tmpNumArray = bb[0:2]
bb = bb[2:]
if (sum(leftArray) <= sum(rightArray)):
leftArray.append(tmpNumArray[0])
rightArray.append(tmpNumArray[1])
else :
leftArray.append(tmpNumArray[1])
rightArray.append(tmpNumArray[0])
leftArray.sort()
rightArray.sort()
tmpKeyArray = getMinSubKeys(leftArray, rightArray)
if (tmpKeyArray == None):
continue
else:
orgSubNum = abs(sum(leftArray) - sum(rightArray));
newSubNum = abs(orgSubNum + (rightArray[tmpKeyArray[1]] - leftArray[tmpKeyArray[0]]) * 2)
if (newSubNum < orgSubNum):
tmpNum = leftArray[tmpKeyArray[0]]
leftArray[tmpKeyArray[0]] = rightArray[tmpKeyArray[1]]
rightArray[tmpKeyArray[1]] = tmpNum
leftArray.sort()
rightArray.sort()
print leftArray, sum(leftArray)
print rightArray, sum(rightArray)
print "The subNum is: %d" % abs(sum(leftArray) - sum(rightArray))
输出结果如下:
[93, 91, 90, 82, 81, 74, 74, 74, 74, 68, 60, 57, 49, 48, 48, 45, 36, 35, 29, 22] [22, 36, 48, 48, 60, 68, 74, 81, 82, 93] 612 [29, 35, 45, 49, 57, 74, 74, 74, 90, 91] 618 The subNum is: 6

浙公网安备 33010602011771号