2020-2021-1 20209306 《linux内核原理与分析》第三周作业

一、实验:完成一个简单的时间片轮转多道程序内核代码

LinuxKernel/linux-3.9.4目录下查看mymain.c和myinterrupt.c的代码,为了完成实验,需将其中代码进行相应修改。
未修改mymain.c中的代码:

未修改的myinterrupt.c代码:

通过对教材的理解和GitHub上代码的查看,对两个文件进行相应的代码修改。
对mymain.c进行相应的修改,这里是mykernel内核代码的入口,负责初始化内核的各个组成部分。以下为相应修改后的代码:

#include <linux/string.h>
#include <linux/ctype.h>
#include <linux/tty.h>
#include <linux/vmalloc.h>
#include "mypcb.h"
tPCB task[MAX_TASK_NUM];
tPCB * my_current_task = NULL;
volatile int my_need_sched = 0;
void my_process(void);
void __init my_start_kernel(void)
{
    int pid = 0;
    int i;
    /* Initialize process 0*/
    task[pid].pid = pid;
    task[pid].state = 0;/* -1 unrunnable, 0 runnable, >0 stopped */
    task[pid].task_entry = task[pid].thread.ip = (unsigned long)my_process;
    task[pid].thread.sp = (unsigned long)&task[pid].stack[KERNEL_STACK_SIZE-1];
    task[pid].next = &task[pid];
    /*fork more process */
    for(i=1;i<MAX_TASK_NUM;i++)
    {
        memcpy(&task[i],&task[0],sizeof(tPCB));
        task[i].pid = i;
	    task[i].thread.sp = (unsigned long)(&task[i].stack[KERNEL_STACK_SIZE-1]);
        task[i].next = task[i-1].next;
        task[i-1].next = &task[i];
    }
    /* start process 0 by task[0] */
    pid = 0;
    my_current_task = &task[pid];
	asm volatile(
    	"movl %1,%%rsp\n\t" 	/* set task[pid].thread.sp to rsp */
    	"pushl %1\n\t" 	        /* push rbp */
    	"pushl %0\n\t" 	        /* push task[pid].thread.ip */
    	"ret\n\t" 	            /* pop task[pid].thread.ip to rip */
    	: 
    	: "c" (task[pid].thread.ip),"d" (task[pid].thread.sp)	/* input c or d mean %ecx/%edx*/
	);
} 

int i = 0;

void my_process(void)
{    
    while(1)
    {
        i++;
        if(i%10000000 == 0)
        {
            printk(KERN_NOTICE "this is process %d -\n",my_current_task->pid);
            if(my_need_sched == 1)
            {
                my_need_sched = 0;
        	    my_schedule();
        	}
        	printk(KERN_NOTICE "this is process %d +\n",my_current_task->pid);
        }     
    }
}

接下来修改myinterrupt.c,主要是增加了进程切换的代码my_schedule(void)函数。修改后代码如下:

#include <linux/string.h>
#include <linux/ctype.h>
#include <linux/tty.h>
#include <linux/vmalloc.h>

#include "mypcb.h"

extern tPCB task[MAX_TASK_NUM];
extern tPCB * my_current_task;
extern volatile int my_need_sched;
volatile int time_count = 0;

/*
 * Called by timer interrupt.
 * it runs in the name of current running process,
 * so it use kernel stack of current running process
 */
void my_timer_handler(void)
{
    if(time_count%1000 == 0 && my_need_sched != 1)
    {
        printk(KERN_NOTICE ">>>my_timer_handler here<<<\n");
        my_need_sched = 1;
    } 
    time_count ++ ;  
    return;  	
}

void my_schedule(void)
{
    tPCB * next;
    tPCB * prev;

    if(my_current_task == NULL 
        || my_current_task->next == NULL)
    {
    	return;
    }
    printk(KERN_NOTICE ">>>my_schedule<<<\n");
    /* schedule */
    next = my_current_task->next;
    prev = my_current_task;
    if(next->state == 0)/* -1 unrunnable, 0 runnable, >0 stopped */
    {        
    	my_current_task = next; 
    	printk(KERN_NOTICE ">>>switch %d to %d<<<\n",prev->pid,next->pid);  
    	/* switch to next process */
    	asm volatile(	
        	"pushl %%rbp\n\t" 	    /* save rbp of prev */
        	"movl %%rsp,%0\n\t" 	/* save rsp of prev */
        	"movl %2,%%rsp\n\t"     /* restore  rsp of next */
        	"movl $1f,%1\n\t"       /* save rip of prev */	
        	"pushl %3\n\t" 
        	"ret\n\t" 	            /* restore  rip of next */
        	"1:\t"                  /* next process start here */
        	"popl %%rbp\n\t"
        	: "=m" (prev->thread.sp),"=m" (prev->thread.ip)
        	: "m" (next->thread.sp),"m" (next->thread.ip)
    	); 
    }  
    return;	
}

然后增加一个mypch.h,用来定义进程控制块,代码如下:

#define KERNEL_STACK_SIZE   1024*2
/* CPU-specific state of this task */
struct Thread {
    unsigned long		ip;
    unsigned long		sp;
};

typedef struct PCB{
    int pid;
    volatile long state;	/* -1 unrunnable, 0 runnable, >0 stopped */
    unsigned long stack[KERNEL_STACK_SIZE];
    /* CPU-specific state of this task */
    struct Thread thread;
    unsigned long	task_entry;
    struct PCB *next;
}tPCB;

void my_schedule(void);

最后make重新编译。

二、学习总结

1.堆栈相关的寄存器

ESP:堆栈指针
EBP:基址指针

2.堆栈操作

堆栈主要用到的操作是push和pop,在上一章的课程中已经熟悉。

3.其他关键寄存器

了解了CS寄存器。一般程序都至少会用到标准库,整个程序会有多个代码段。
*顺序执行:总是指向地址连续的下一套指令。
*跳转/分支:执行这样的指令时,CS:EIP的值会根据程序需要被修改。
*call:将当前CS:EIP的值压入栈顶,CS:EIP指向被调用函数的入口地址。
*ret:从栈顶弹出原来保存在这里的CS:EIP的值,放入CS:EIP中。

4.用堆栈来传递函数的参数

对32位x86CPU来讲,通过堆栈来传递参数的方法时从右到左依次压栈。

5.了解了函数如何传递返回值,堆栈还提供局部变量的空间,编译器使用堆栈的规则。

三、学习总结和遇到的问题

第二章的学习让我了解了计算机的三个法宝:存储程序计算机、函数调用堆栈机制和中断机制;学习了借助linux内核部分源代码模拟存储程序计算机工作模型及时钟中断。
思考了一个问题:为什么应用程序不能直接访问硬件而是通过操作系统?
原因是计算机运行时,内核是被信任的第三方,只有内核可以执行特权指令。这是为了方便应用程序。

posted @ 2020-10-24 12:43  毛贲豪  阅读(135)  评论(0编辑  收藏  举报