深入理解计算机系统(第三版)作业题答案(第二章)

说明

我发现,当把这些题做完之后对本章知识的理解才算有点小进步。下边的答案主要参考了这两个网站:

  1. http://blog.csdn.net/zhanyu1990/article/details/24936663
  2. https://dreamanddead.gitbooks.io/csapp-3e-solutions/chapter2

2.58


原理是把指向一个int类型的指针强行改为指向char类型,一般来说一个char占8位,这就能判断出来取出的值是否大于1

int is_little_endian(){
    int a = 1;
    return *((char*)&a);
}

2.59


这个比较简单,主要考察如何获取某些位。

(x&0xFF) | (y&~0xFF)

2.60

i << 3表示i * 2^3, 其原理是找出需要替换的那些位,然后将其替换掉就行了。

unsigned replace_byte(unsigned x, unsigned char b, int i)
{
    return (x & ~(0xFF<<(i<<3))) | (b << (i<<3));
}

位级整数编码规则


2.61


下边的内容跟书的题目有关系,需要根据实际情况。

A(!~x) // 比较简单,不解释
B(!x) // 同上
C(!~(x | (~0xFF))) // x的最低有效字节中的位都等于1
D(!(x >> ((sizeof(int) - 1) << 3))) // x的最高有效字节中的位都等于0

2.62

这个题我觉得在使用补码表示整数的机器上是没啥问题的

#include <stdio.h>

int int_shifts_are_arithmetic() {
    int i = -1;
    return (i >> 1) == -1;
}

int main(void) {
    printf("%d", int_shifts_are_arithmetic());
}

2.63

#include <stdio.h>

unsigned srl(unsigned x, int k) {
    int xsrl = (int)x >> k;
    int w = 8 * sizeof(int);

    unsigned z = 2 << (w - k -1);
    return (z - 1) & xsrl;
}

int sra(int x, int k) {
    int xsra = (unsigned)x >> k;
    int w = sizeof(int) << 3;

    unsigned z = 1 << (w - k - 1);
    unsigned mask = z - 1;

    unsigned right = xsra & mask;
    unsigned left = ~mask & (~(z & xsra) + z);

    return left | right;
}

int main(void) {
    unsigned t1 = srl(100, 2);
    unsigned t2 = (unsigned)100 >> 2;
    printf("%d----%d \n", t1, t2);

    int t3 = sra(100, 2);
    int t4 = 100 >> 2;
    printf("%d----%d \n", t3, t4);

    int t5 = sra(-100, 2);
    int t6 = -100 >> 2;
    printf("%d----%d \n", t5, t6);
}

2.64

// 该题目要求,只要奇数位有1,就返回1,否则返回0

#include <stdio.h>
/* Return 1 when any odd bit of x equals 1, 0 otherwise.
   Assume w = 32.
*/
int any_odd_one(unsigned x) {
    return !!(x & 0x55555555);
}

int main(void) {
    int result = any_odd_one((unsigned)5);
    printf("The result of 5: %d \n", result);

    int result1 = any_odd_one((unsigned)2);
    printf("The result of 2: %d \n", result1);
}

2.65

// 该题目要求,只要二进制书中1的个数为奇数,就返回1,否则返回0


#include <stdio.h>
/* Return 1 when x contains an odd nuimber of 1s, 0 otherwise.
   Assume w = 32.
*/
int odd_ones(unsigned x) {
    // 这是第一层的处理,对某一位i而言,通过右移了一位,我们就获取到了i前边的那一位,把他们异或后,
    // 得到的位的值为0或者1,1就表示和前边的一位中有奇数个1,0表示有偶数个1.
    x ^= (x >> 1);

    // 经过上边的处理后呢,x中每一位的值的意义就不同了,他表示该位和它前边的位1的个数是奇数还是偶数
    //  此时我们再右移2位,就获得了i前边的前边的值j,这个值j表示j和前边一位1的个数是奇数还是偶数
    //  异或后,的值就便是到j前边,一共四位1的个数是奇数还是偶数
    x ^= (x >> 2);

    // 后面的都是按照上边的原理依次类推的

    x ^= (x >> 4);
    x ^= (x >> 8);
    x ^= (x >> 16);
    return x & 1;
}

int main(void) {
    int result = odd_ones((unsigned)5);
    printf("The result of 5: %d \n", result);

    int result1 = odd_ones((unsigned)7);
    printf("The result of 3: %d \n", result1);
}

2.66

#include <stdio.h>
#include <assert.h>

// 1. 先使用或加位移让第一个1的后边都是1
// 2. 然后取非后右移一位后,最右边的1就是我们想要的掩码
// 3. 由于上边得到的那个1就是原值中的第一个1的位置,因此&上原值就清空了1前边的位
int leftmost_one(unsigned x) {
    x |= x >> 1;
    x |= x >> 2;
    x |= x >> 4;
    x |= x >> 8;
    x |= x >> 16;

    return x & (~x >> 1);
}

int main(void) {
    assert(leftmost_one(0xff00) == 0x8000);
    assert(leftmost_one(0x6600) == 0x4000);
    return 0;
}

2.67

#include <stdio.h>
#include <assert.h>

int int_size_is_32() {
    int set_msb = 1 << 31;
    int beyond_msb = set_msb << 1;

    return set_msb && !beyond_msb;
}

int int_size_is_32_for_16bit() {
    int set_msb = 1 << 15 << 15 << 1;
    int beyond_msb = set_msb << 1;

    return set_msb && !beyond_msb;
}

int main(void) {
    printf("1: %lu \n", sizeof(1));
    printf("32: %d \n", int_size_is_32());
    printf("16: %d \n", int_size_is_32_for_16bit());
}

2.68

#include <stdio.h>
#include <assert.h>

int lower_one_mask(int n) {
    int w = sizeof(int) << 3;
    return (unsigned)-1 >> (w - n);
}

int main(void) {
    assert(lower_one_mask(6) == 0x3F);
    assert(lower_one_mask(17) == 0x1FFFF);
    assert(lower_one_mask(32) == 0xFFFFFFFF);
    return 0;
}

2.69

#include <stdio.h>
#include <assert.h>

unsigned rotate_left(unsigned x, int n) {
    int w = sizeof(int) << 3;
    unsigned t = x << n;
    unsigned t1 = x >> (w - n - 1) >> 1;
    return t | t1;
}

int main(void) {
    assert(rotate_left(0x12345678, 4) == 0x23456781);
    assert(rotate_left(0x12345678, 20) == 0x67812345);
    assert(rotate_left(0x12345678, 0) == 0x12345678);
    return 0;
}

2.70

#include <stdio.h>
#include <assert.h>

// 如果x的二进制可以用n位表示就返回1,
/*
   * Assume w = 8, n = 3
   * if x > 0
   *   0b00000110 is ok, 0b00001010 is not
   *   first w-n bits must be 0
   * if x < 0
   *   0b11111100 is ok, 0b10111100 is not, and 0b11111000 is not yet
   *   first w-n+1 bits must be 1
   */
int fits_bits(int x, int n) {
    int w = sizeof(int) << 3;
    x >>= n - 1;

    /*
     * !(x >> 1) 用于判断x大于0的情况
     * !~x 用于判断x小于0的情况
     */
    return !(x >> 1) || !~x;
}

int main(void) {
    assert(fits_bits(0xFF, 8));
    assert(!fits_bits(0xFFFFFF00, 8));
    return 0;
}

2.71

#include <stdio.h>
#include <assert.h>

typedef unsigned packet_t;

// 该函数的作用是取出一个字中的某个字节,然后把该字节扩展为有符号整数
// 难点在于如何利用算数右移填充前边的位
// 核心思想就是先把目前字节左移到最高位,然后再利用算数右移
int xbyte(packet_t word, int bytenum) {
    int size = sizeof(unsigned);
    int shift_left_val = (size - 1 - bytenum) << 3;
    int shift_right_val = (size - 1) << 3;
    return (int)word << shift_left_val >> shift_right_val;
}

int main(void) {
    assert(xbyte(0xAABBCCDD, 1) == 0xFFFFFFCC);
    assert(xbyte(0x00112233, 2) == 0x11);
    return 0;
}

2.72

#include <stdio.h>
#include <assert.h>
#include <stdlib.h>
#include <string.h>

void copy_int(int val, void *buf, int maxbytes) {
    if (maxbytes >= (int)sizeof(val)) {
        memcpy(buf, (void *)&val, sizeof(val));
    }
}

int main() {
    int maxbytes = sizeof(int) * 10;
    void *buf = malloc(maxbytes);
    int val;

    val = 0x12345678;
    copy_int(val, buf, maxbytes);
    assert(*(int *)buf == val);
        val = 0x11111111;

    val = 0xAABBCCDD;
    copy_int(val, buf, 0);
    assert(*(int *)buf != val);

    return 0;
}

2.73

#include <stdio.h>
#include <assert.h>
#include <limits.h>

// 该函数是饱和加法,当正溢出,取最大整数,负溢出,取最小整数
int saturationg_add(int x, int y) {
    int sum = x + y;
    int sig_mask = INT_MIN;

    // 如果x > 0 y > 0 sum < 0 正溢出
    // 如果x < 0 y < 0 sum > 0 负溢出
    int pos_over = !(x & sig_mask) && !(y & sig_mask) && (sum & sig_mask);
    int neg_over = (x & sig_mask) && (y & sig_mask) && !(sum & sig_mask);

    (pos_over && (sum = INT_MAX)) || (neg_over && (sum = INT_MIN));

    return sum;
}


int main() {
    assert(INT_MAX == saturationg_add(INT_MAX, 0x1234));
    assert(INT_MIN == saturationg_add(INT_MIN, -0x1234));
    assert(0x12 + 0x34 == saturationg_add(0x12, 0x34));

    return 0;
}

2.74

#include <stdio.h>
#include <assert.h>
#include <limits.h>

// 该函数用于检查两个整数相减会不会产生溢出
// 这个和上边的题目很相似,可以把x-y看做x+(-y)
int tsub_ok(int x, int y) {
    // 当y为最小整数的时候,就产生了溢出,因为任何数减最小数都会溢出
    if (y == INT_MIN) {
        return 0;
    }

    int neg_y = -y;
    int sum = x + neg_y;
    int pos_over = x > 0 && neg_y > 0 && sum < 0;
    int neg_over = x < 0 && neg_y < 0 && sum >= 0;

    return !(pos_over || neg_over);
}


int main(int argc, char* argv[]) {
  assert(!tsub_ok(0x00, INT_MIN));
  assert(tsub_ok(0x00, 0x00));
  return 0;
}

2.75

/*
    这个问题需要一步一步的进行推导
    T2Uw(x)我们把这种写法称为补码转无符号数,那么很容易得出:
    (2^w表示2的w次方,为什么当x<0时是这个结果呢,
    其实,补码的负数就是把原来w-1之后的位的结果减去了最高一位的值,最高位的值就是2^w)
    if x < 0  => x + 2^w
    if x > 0  => x

    上边的公式很简单,但在使用的时候还要做判断,显然很不科学,我们可以认为T2Uw(x)是一个函数
    接下来就想办法推导出一个表达式来

    这里省略了一系列的推导过程,得出了这样一个结果"
    T2Uw(X)= X + X(w-1)2^w

    大家看看这个式子跟上边的那个作用一样,x的w-1位就是他的最高位,如果该位的值是1,那么就相当于
    x<0的情况,否则就是另一种情况

    我们假设x`表示x的无符号值
    X` = X + X(w-1)2^w

    我们假设y`表示x的无符号值
    Y` = Y + Y(w-1)2^w

    那么X` * Y` = (X + X(w-1)2^w) * (Y + Y(w-1)2^w)
    如果要把这个计算式展开会很麻烦,我们可以进一步抽象
    设a = X(w-1)2^w, b= Y(w-1)2^w
    则: X` * Y` = X*Y + X*b + Y*a + a*b

    我们假定有这样一个函数,他的功能是取出无符号数的最高位uh(),因此上边的式子变形为:
    uh(X` * Y`) = uh(X*Y + X*b + Y*a + a*b)
                = uh(X*Y) + uh(X*b) + uh(Y*a) + uh(a*b)

    那么X * b 也就是X*b= X*Y(w-1)2^w 他的最高位的值就是X*Y(w-1)2^w / 2^w => X*Y(w-1)
    那么Y * a 也就是Y*a= Y*X(w-1)2^w 他的最高位的值就是Y*X(w-1)2^w / 2^w => Y*X(w-1)
    那么a * b 也就是a*b= X(w-1)2^w * Y(w-1)2^w 他 / 2^w => 0

    ===> uh(X` * Y`) = uh(X*Y) + X*Y(w-1) + Y*X(w-1)

    上边推理的核心思想就是 无符号X`的补码表示:X + X(w-1)2^w 求高位的/ 2^w 操作
*/

/*
 * unsigned-high-prod.c
 */
#include <stdio.h>
#include <assert.h>
#include <inttypes.h>

int signed_high_prod(int x, int y) {
  int64_t mul = (int64_t) x * y;
  return mul >> 32;
}

unsigned unsigned_high_prod(unsigned x, unsigned y) {
  /* TODO calculations */
  int sig_x = x >> 31;
  int sig_y = y >> 31;
  int signed_prod = signed_high_prod(x, y);
  return signed_prod + x * sig_y + y * sig_x;
}

/* a theorically correct version to test unsigned_high_prod func */
unsigned another_unsigned_high_prod(unsigned x, unsigned y) {
  uint64_t mul = (uint64_t) x * y;
  return mul >> 32;
}

int main(int argc, char* argv[]) {
  unsigned x = 0x12345678;
  unsigned y = 0xFFFFFFFF;

  assert(another_unsigned_high_prod(x, y) == unsigned_high_prod(x, y));
  return 0;
}

2.76

#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <assert.h>
#include <string.h>

void *another_calloc(size_t nmemb, size_t size) {
    if (nmemb == 0 || size == 0) {
        return NULL;
    }

    size_t buff_size = nmemb * size;
    if (nmemb == buff_size / size) {
        void *ptr = malloc(buff_size);
        memset(ptr, 0, buff_size);
        return ptr;
    }

    return NULL;
}


int main() {
    void *p;
    p = another_calloc(0x1234, 1);
    assert(p != NULL);
    free(p);

    p = another_calloc(SIZE_MAX, 2);
    assert(p == NULL);
    free(p);

    return 0;
}

2.77

#include <stdio.h>
#include <assert.h>

// K = 17
int A(int x) {
    return (x << 4) + x;
}

// K = -7
int B(int x) {
    return x - (x << 3);
}

// K = 60
int C(int x) {
    return (x << 6) - (x << 2);
}

// K = -112
int D(int x) {
    return (x << 4) - (x << 7);
}

int main() {
    int x = 0x12345678;

    assert(A(x) == x * 17);
    assert(B(x) == x * -7);
    assert(C(x) == x * 60);
    assert(D(x) == x * -112);

    printf("Passed.\n");
    return 0;
}

2.78

#include <stdio.h>
#include <assert.h>
#include <limits.h>

// c语言的除法要求向0取整,除法本质上就是右移操作
int divide_power2(int x, int k) {
    int is_neg = x & INT_MIN;
    (is_neg && (x = x + (1 << k) - 1));
    return x >> k;
}

int main(int argc, char* argv[]) {
  int x = 0x80000007;
  assert(divide_power2(x, 1) == x / 2);
  assert(divide_power2(x, 2) == x / 4);

  printf("%d", x);
  return 0;
}

2.79

#include <stdio.h>
#include <limits.h>
#include <assert.h>

/*
 * 在这个题目中的除以4中我们需要注意的是取整问题,因此需要用到题目2.78的函数
 */

int divide_power2(int x, int k) {
    int is_neg = x & INT_MIN;
    (is_neg && (x = x + (1 << k) -1));
    return x >> k;
}

int mul3div4(int x) {
    int mul3 = (x << 1) + x;
    return divide_power2(mul3, 2);
}


int main() {
    int t = 0x12345678;
    assert(mul3div4(t) == (t * 3 / 4));
    return 0;
}

2.80

#include <stdio.h>
#include <assert.h>
#include <limits.h>

/*
 * 这个题目非常有意思,要保证不溢出,就要先做除法,也就是先除以4再乘以3
 * 在下边中用到了一个非常巧妙的地方,把一个整数进行拆分
 */

/*
 * calculate 3/4x, no overflow, round to zero
 *
 * no overflow means divide 4 first, then multiple 3, diffrent from 2.79 here
 *
 * rounding to zero is a little complicated.
 * every int x, equals f(first 30 bit number) plus l(last 2 bit number)
 *
 *   f = x & ~0x3
 *   l = x & 0x3
 *   x = f + l
 *   threeforths(x) = f/4*3 + l*3/4
 *
 * f doesn't care about round at all, we just care about rounding from l*3/4
 *
 *   lm3 = (l << 1) + l
 *
 * when x > 0, rounding to zero is easy
 *
 *   lm3d4 = lm3 >> 2
 *
 * when x < 0, rounding to zero acts like divide_power2 in 2.78
 *
 *   bias = 0x3    // (1 << 2) - 1
 *   lm3d4 = (lm3 + bias) >> 2
 */

int threeforths(int x) {
  int is_neg = x & INT_MIN;

  int f = x & ~0x3;
  int l = x & 0x3;

  int fd4 = f >> 2;
  int fd4m3 = (fd4 << 1) + fd4;

  int lm3 = (l << 1) + l;
  int bias = (1 << 1) + 1;
  (is_neg && (lm3 += bias));
  int lm3d4 = lm3 >> 2;

  return fd4m3 + lm3d4;
}

int main(int argc, char* argv[]) {
  assert(threeforths(8) == 6);
  assert(threeforths(9) == 6);
  assert(threeforths(10) == 7);
  assert(threeforths(11) == 8);
  assert(threeforths(12) == 9);

  assert(threeforths(-8) == -6);
  assert(threeforths(-9) == -6);
  assert(threeforths(-10) == -7);
  assert(threeforths(-11) == -8);
  assert(threeforths(-12) == -9);
  return 0;
}

2.81


#include <stdio.h>
#include <assert.h>
#include <limits.h>

int A(int k) {
    return -1 << k;
}

int B(int k, int j) {
    return ~A(k) << j;
}


int main(int argc, char* argv[]) {
  assert(A(8) == 0xFFFFFF00);
  assert(B(16, 8) == 0x00FFFF00);

  printf("%d", -INT_MIN);
  return 0;
}

2.82

/*
 * 2.82.c
 */
#include <stdio.h>
#include <assert.h>
#include <limits.h>
#include "lib/random.h"

// 强调的是这个推导的过程

/* broken when x is INT_MIN */
int A(int x, int y) {
  return (x < y) == (-x > -y);
}

/*
 * right
 *
 * ((x + y) << 4) + y - x
 *   =>
 * x << 4 - x + y << 4 + y
 *   =>
 * x*16 - x + y*16 + y
 *   whether overflow or not, =>
 * x*15 + y*17
 */
int B(int x, int y) {
  return ((x + y) << 4) + y - x == 17 * y + 15 * x;
}

/*
 * right
 *
 * ~x + ~y + 1
 *   =>
 * ~x + 1 + ~y + 1 - 1
 *   =>
 * -x + -y - 1
 *   =>
 * -(x + y) - 1
 *   =>
 * ~(x + y) + 1 - 1
 *   =>
 * ~(x + y)
 */
int C(int x, int y) {
  return ~x + ~y + 1 == ~(x + y);
}

/*
 * right
 *
 * (ux - uy) == -(unsigned) (y - x)
 *   =>
 * -(ux - uy) == (unsigned) (y - x)
 *   =>
 * (ux - uy) == (unsigned) (x - y)
 */
int D(int x, int y) {
  unsigned ux = (unsigned) x;
  unsigned uy = (unsigned) y;

  return (ux - uy) == -(unsigned) (y - x);
}

/*
 * right
 *
 * x >> 2 << 2
 *   =>
 * x & ~0x3
 *   =>
 * x - num(00/01/10/11)
 *   =>
 * ((x >> 2) << 2) <= x
 */
int E(int x, int y) {
  return ((x >> 2) << 2) <= x;
}

int main(int argc, char* argv[]) {
  init_seed();
  int x = random_int();
  int y = random_int();

  assert(!A(INT_MIN, 0));
  assert(B(x, y));
  assert(C(x, y));
  assert(D(x, y));
  assert(E(x, y));
  return 0;
}

2.83

/*
 * A:
 * 这个问题的关键是找到y,k 和整数x的关系
 * 我们假设这个整数是x
 * 那么x = 0.yyyyyyyy... 这个时候是无法得出结果的,并没有用到k
 * 那么要想用到k,我们把x左移k为 x << k = y.yyyyyyyy...
 * 上边的那个表达式中y.yyyyyyyyy... = Y + x
 * 因此得出 x << k = Y + x === > x << k - x = Y == > x = Y/(2^k - 1)


 * B:
 * y = 101  == > k=3 Y=5 x=5/7
 * y = 0110  == > k=4 Y=6 x=6/15
 * y = 010011  == > k=6 Y=19 x=19/63
 */

2.84

#include <stdio.h>
#include <assert.h>

unsigned f2u(float x) {
    return *(unsigned *)&x;
}

int float_le(float x, float y) {
    unsigned ux = f2u(x);
    unsigned uy = f2u(y);

    unsigned sx = ux >> 31;
    unsigned sy = uy >> 31;

    return sx == sy ? (sx == 0 ? ux <= uy : ux >= uy) : sx > sy;
}


int main() {
    assert(float_le(+0, -0));
    assert(float_le(0, 3));
    assert(float_le(-4.12, -0));
    assert(float_le(-4, 4));

    return 0;
}

2.85


A:
bias = 2^(k-1) - 1 =
v = 2^E + M

7.0 = 111.000 = 1.11000x2^2

E = 2 = e - bias ==>  e = E + bias = 2 + bias = 1 + 2^(k-1) ==> 0 1000...001 1100...


B:
能够描述的最大的奇整数的位应该是111111......
而浮点数表示为1.111111...*2^n的样式,小数点后边应该有n个1 得到这些,我们就能计算出该浮点数的二进制表示
因此最大的奇整数位11111... 有n+1个1 也就是2^(n+1) - 1
E = n  ==> e = E + bias = n + bias
==> 0 n + bias 11111...

C:
要想得到最小的规格数,M必须是1.00...的样式 E = 1 - bias
V = 2^(1-bias) 取倒数 ==> V = 2^(bias-1) ==> E = bias - 1
e = bias + E ==> e = 2bias -1 = 2(2^(k-1) - 1) - 1 = 2^k -3
==> 0 1111...101 000000

2.86



第一行答案:
最小的正非规格化数,要满足一下几个条件
1. 符号位为1
2. 阶码位全部为0
3. 单独的整数位为0
4. 小数位最后一位为1,其他都为0
得出的结论是: 0 000..00(15位) 0 000..01(63位)

偏量bias = 2^(k-1) - 1 = 2^(15-1) - 1 = 2^14 - 1
E = 1 - bias = 1 - 2^14 + 1 = 2 - 2^14
V = M * 2^E = 2^(-63) * 2^(2 - 2^14) = 2^(-63 + 2 - 2^14) = 2^(-61-2^14)



第二行答案:
最小的正规格数,满足下边几个条件
1. 符号位为0
2. 阶码位为1
3. 按照该题目要求,单独的整数位为1
4. 小数位全是0
得出的结论是: 0 000..01(15位) 1 000..00(63位)

偏量bias = 2^(k-1) - 1 = 2^(15-1) - 1 = 2^14 - 1
E = e - bias = 1 - 2^14 + 1 = 2 - 2^14
V = M * 2^E = 1 * 2^(2 - 2^14)



第三行答案:
最大的规格数,满足下边几个条件
1. 符号位为0
2. 阶码位全为1
3. 按照该题目要求,单独的整数位为1
4. 小数位全是1
得出的结论是: 0 111..10(15位) 1 111..11(63位)

偏量bias = 2^(k-1) - 1
E = e - bias = 2^15 - 2 - bias
V = M * 2^E = M * 2^(2^15 - 2 - bias) = M * 2^(2^14 * 2 - 2 - bias)
= M * 2^(2bias - bias) = M * 2^bias
此时M = 1 + (1 - 2^-63) = 2 - 2^-63
得出最终的结果是:2^bias * (2 - 2^-63)

2.87

-0:
首先尾数M必须为0
阶码可以设置成00000 因此E = 1 - bias = 1 - 15 = -14
得到的位模式为:1 00000 0000000000 ==> 0x8000


最小的>2的值:
由M * 2^E ==> E = 1 M = 1.0000000001
E = e - bias ==> e = E + bias = 16 ==> e = 100000
M的值为2^-10 + 1 = 1025/1024
得到的位模式为:0 10000 0000000001 ==> 0x4001
V = 1025/1024 * 2 = 1025/512


512:
M = 1 E = 9 = e - bias ==> e = 9 + 15 = 24 ==> 11000
得到的位模式为:0 11000 0000000000 ==> 0x6000


最大的非规格化数:
非规格化数表示阶码位都是0 E= 1 - bias = -14
M 1023/1024
得到的位模式为:0 00000 1111111111 ==> 0x03FF


-oo:
1 11111 0000000000 ==> 0xFC00


十六进制表示为3BB0:
先把这个数展开:0011 1011 1011 0000 ==> 0 01110 1110110000
e = 14 E = e - bias = 14 - 15 = -1
M = 2^-1 + 2^-2 + 2^-3 + 2^-5 + 2^-6 = 59/64
V = M * 2^E = 59/64 * 2^-1 = 59/128

2.88


注意:如果是规格化的M = 1 + f 非规格化M = f

0 10110 101 :
A:
E = 22 - 15 = 7 V = (2^-1 + 2^-3 + 1) * 2^7 = 13 * 2^4
B:
通过观察,我们发现,先保持小数位不变,求阶码,如果不行,在改变小数位
因此B的 0 1110 1010 V = 13 * 2^4


1 00111 110:
A:
E = 7 - 15 = -8 (2^-1 + 2^-2 + 1) * 2^-8 = 7/4 * 2^-8 = -7/2^10
B:
1 0011 1110 ==> M = 1 + 2^-1 + 2^-2 + 2^-3 = 15/8
==> 2^E = (7/2^10) / (15/8)  = 7/15 / 2^7 约等于2^-1*2^-7 = 2^-8
我们看看2^E的范围 2^-6 ~ 2^14
由于上边计算的2^-8不在这个范围中,因此需要调整阶码的值
先从最小的开始,设阶码为2^-6 那么 7/2^10 / 2^-6 = 7 / 16
==> (1/16 + 2/16 + 4/16) ==> (1/16 + 1/8 + 1/4)  ==> (2^-4 + 2^-3 + 2^-2)
因此B的 0 0000 0111


0 00000 101:
A:
E = 1 - 15 = -14  V = (2^-1 + 2^-3) * 2^-14 = 5 * 2^-3 * 2^-14 = 5 * 2^-17 = 5/2^17
假设使用101作为尾数,那么M = (2^-1 + 2^-3 + 1) = 13 * 2^-3
2^E = V/M = 5/2^17 / (13 * 2^-3) = 5/17 * 2^-17 * 2^3 = 5/17 * 2^-14 显然你在范围之内
先从最小的开始,设阶码为2^-6 那么 5/2^17 / 2^-6 = 5 * 2^-11 显然B无法表示这个小数值
取一个最近似的 0 0000 0000


1 11011 000:
A:
E = 27 - 15 = 12 V = 2^12 取-  得-2^12
B:
由于这个值比较大,因此阶码取最大值1110 e = 14 E = e - 7 = 14 - 7 = 7 这样才能计算M的最小值
M = 2^12 / 2^7 = 2^5
显然M的值无法表示,因此阶码我们这次使用 1111 -oo
1 1111 0000

2.89

/*
 * 2.89.c
 */
#include <stdio.h>
#include <assert.h>
#include <limits.h>
#include "lib/random.h"

/*
 * most important thing is that all double number come from ints
 */

/* right */
int A(int x, double dx) {
  return (float)x == (float)dx;
}

/* wrong when y is INT_MIN */
int B(int x, double dx, int y, double dy) {
  return dx-dy == (double)(x-y);
}

/* right */
int C(double dx, double dy, double dz) {
  return (dx+dy)+dz == dx+(dy+dz);
}

/*
 * wrong
 *
 * FIXME I don't know what conditions cause false
 */
int D(double dx, double dy, double dz) {
  return (dx*dy)*dz == dx*(dy*dz);
}

/* wrong when dx != 0 and dz == 0 */
int E(double dx, double dz) {
  return dx/dx == dz/dz;
}

int main(int argc, char* argv[]) {
  init_seed();

  int x = random_int();
  int y = random_int();
  int z = random_int();
  double dx = (double)x;
  double dy = (double)y;
  double dz = (double)z;

  printf("%x %x %x\n", x, y, z);

  assert(A(x, dx));
  assert(!B(0, (double)(int)0, INT_MIN, (double)(int)INT_MIN));
  assert(C(dx, dy, dz));
  /* magic number, brute force attack */
  assert(!D((double)(int)0x64e73387, (double)(int)0xd31cb264, (double)(int)0xd22f1fcd));
  assert(!E(dx, (double)(int)0));
  return 0;
}

2.90



/*
 * fpwr2.c
 */
#include <stdio.h>
#include <assert.h>
#include <math.h>

float u2f(unsigned x) {
  return *(float*) &x;
}

/* 2^x */
float fpwr2(int x) {
  /* Result exponent and fraction */
  unsigned exp, frac;
  unsigned u;

/* 因为2^x 是大于0的,因此我们首先要确定浮点数能够表示的正非规格化数的最小值是
0 00000000 00000...001  ==> 2^-23 * 2^(1-bias) = 2^-23 * 2^(1-(2^7 - 1))
= 2^-23 * 2^(2-2^7)) = 2^(2 - 2^7 -23) = 2 - 128 - 23 = -149

*/
  if (x < 2-pow(2,7)-23) {
    /* too small. return 0.0 */
    exp = 0;
    frac = 0;
  } else if (x < 2-pow(2,7)) {
    /* Denormalized result */
    /* 求出最小的规格化数
0 00000001 00000...000
E = 1 - 2^7 + 1 = 2 - 2^7 = -126 */

    exp = 0;
    /* 这段代码块求的值应该是非规格化数范围内的值
       根据 V = M * 2^E V = 2^x  ==> 2^x = M * 2^E
       frac = M = 2^x / 2^E
       E = 1 - bias = 2-2^7
       frac = 2^(x - (2 - 2^7)) 这个是frac的值,但是我们如何获得它的位模式呢?
       我们知道0 00000000 00000...001 最后边这个1对应的值是2^-23 也就是说
       小数位的值和他的位模式有一个对应关系,我们只要求出frac是最后这个1(2^-23)的多少
       倍,然后1 << 这个倍数就可以了,这样就得到了frac的位模式
     */
    frac = 1 << (unsigned)(x - (2-pow(2,7)-23));
  } else if (x < pow(2,7)-1+1) {
    /* Normalized result */
    /* 11111111 2^8 -1 - (2^7 - 1) ==> 2^8 - 2^7 -1 + 1 ==> 2^7
       因此求exp 就等于求e e = E + bias = x + (2^7 - 1)
     */
    exp = pow(2,7)-1+x;
    frac = 0;
  } else {
    /* Too big, return +oo */
    exp = 0xFF;
    frac = 0;
  }

  /* pack exp and frac into 32 bits */
  u = exp << 23 | frac;
  /* Result as float */
  return u2f(u);
}

int main(int argc, char* argv[]) {
  assert(fpwr2(0) == powf(2,0));
  assert(fpwr2(100) == powf(2,100));
  assert(fpwr2(-100) == powf(2,-100));
  assert(fpwr2(10000) == powf(2,10000));
  assert(fpwr2(-10000) == powf(2,-10000));
  return 0;
}

2.91

A:
0x40490FDB 展开后 0100 0000 0100 1001 0000 1111 1101 1011
换成小数的位模式: 0 10000000 10010010000111111011011

由于2^E = 2 V = 2M  我们知道M = 1.10010010000111111011011 那么2m
就相当于 << 1 得到:11.0010010000111111011011

B:
在问题2.83中我们得出这么一个公式:x = Y/(2^k - 1)
在本题中 x = 1/7 也就是说Y = 1 k = 3 说明Y是3位且值为1 因此就是001
所以最终的答案是11.001001001...(001)

C:
十进制小数转二进制数:“乘以2取整,顺序排列”(乘2取整法)
223/71 = 3.140845070422535 小数部分:0.140845070422535
0.140845070422535 * 2 = 0.28169014084507  ----- 取整 ----- 0
0.28169014084507 * 2 = 0.563380281690141  ----- 取整 ----- 0
0.563380281690141 * 2 = 1.126760563380282  ----- 取整 ----- 1
0.126760563380282 * 2 = 0.253521126760563  ----- 取整 ----- 0
0.253521 * 2 = 0.507042  ----- 取整 ----- 0
0.507042 * 2 = 1.014084  ----- 取整 ----- 1
0.014084 * 2 = 0.028168  ----- 取整 ----- 0
0.028168 * 2 = 0.056336  ----- 取整 ----- 0
0.056336 * 2 = 0.112672  ----- 取整 ----- 0
0.112672 * 2 = 0.225344  ----- 取整 ----- 0
因此在第9位就不同了

2.92

#include <stdio.h>
#include <assert.h>

typedef unsigned float_bits;

float_bits float_negate(float_bits f) {
    unsigned sig = f >> 31;
    unsigned exp = f >> 23 & 0xFF;
    unsigned frac = f & 0x7FFFFF;

    int is_nan = (exp == 0xFF && frac != 0);
    if (is_nan) {
        return f;
    }

    return ~sig << 31 | exp << 23 | frac;
}

int main() {
    printf("%u", float_negate(32.0));
    assert(float_negate(32.0) == -32.0);
    return 0;
}

2.93

#include <stdio.h>
#include <assert.h>

typedef unsigned float_bits;

float_bits float_absval(float_bits f) {
    unsigned exp = f >> 23 & 0xFF;
    unsigned frac = f & 0x7FFFFF;

    int is_nan = (exp == 0xFF && frac != 0);
    if (is_nan) {
        return f;
    }

    return 0 << 31 | exp << 23 | frac;
}

int main() {
    printf("%u\n", float_absval(32.0));
    return 0;
}

2.94

#include <stdio.h>
#include <assert.h>

typedef unsigned float_bits;

/*
 * 要想实现浮点数*2,可以这么考虑 V = M * 2^E
 * 当浮点数是规格数的时候,我们只需要改变E就行了,E = e - bias ==> 相当于给e的值+1
 * 但是+1有个特殊情况,要是e的位模式为11111110 +1 就需要特殊处理
 * 如果是非规格数, 那么 2^E就是固定的值,我们只能改变M的大小,*2就相当于把小数位左移一位
 */

float_bits float_twice(float_bits f) {
    unsigned sig = f >> 31;
    unsigned exp = f >> 23 & 0xFF;
    unsigned frac = f & 0x7FFFFF;

    int is_nan_or_oo = (exp == 0xFF);
    if (is_nan_or_oo) {
        return f;
    }

    if (exp == 0) {
        frac <<= 1;
    } else if (exp == 0xFE) {
        exp = 0xFF;
        frac = 0;
    } else {
        exp += 1;
    }

    return sig << 31 | exp << 23 | frac;
}

int main() {
    printf("%u\n", float_twice(32.22));
    return 0;
}

2.95

/*
 * float-half.c
 */
#include <stdio.h>
#include <assert.h>

typedef unsigned float_bits;

float_bits float_half(float_bits f) {
  unsigned sig = f >> 31;
  unsigned rest = f & 0x7FFFFFFF;
  unsigned exp = f >> 23 & 0xFF;
  unsigned frac = f & 0x7FFFFF;

  int is_NAN_or_oo = (exp == 0xFF);
  if (is_NAN_or_oo) {
    return f;
  }

  /*
   * 这里就用到了向偶数取整的知识,在下边的注释中描述的很详细
   * 那么如何理解取整呢,我们假设这个被右移出去的位为a,那么a就有可能是1或者0,如果是0,那么我们
     就不需要取整,如果是1,我们可以这么想:1111.a 这个a如果是1,折算成小数就是0.5 因此是需要
     取整的,它前边的那一位如果是0,表示已经是偶数了,就舍弃a 如果是1,要向上取整,在未右移之前+1就可以了
   */

  /*
   * round to even, we care about last 2 bits of frac
   *
   * 00 => 0 just >>1
   * 01 => 0 (round to even) just >>1
   * 10 => 1 just >>1
   * 11 => 1 + 1 (round to even) just >>1 and plus 1
   */
  int addition = (frac & 0x3) == 0x3;

  if (exp == 0) {
    /* Denormalized */
    frac >>= 1;
    frac += addition;
  } else if (exp == 1) {
    /* Normalized to denormalized */
    rest >>= 1;
    rest += addition;
    exp = rest >> 23 & 0xFF;
    frac = rest & 0x7FFFFF;
  } else {
    /* Normalized */
    exp -= 1;
  }

  return sig << 31 | exp << 23 | frac;
}

2.96

#include <stdio.h>
#include <assert.h>

/*
    我们首先考虑作为浮点数f能表示的最大的合法的整数是多少?
    V = M * 2^E E = e - bias 由这两个公式可知E越大越好也就是e越大越好
    e ==> 11111110 不能是11111111,
    我们再考虑一个范围 0 <= f < 1 如果f在这个范围中,那么它的值就直接取0
    我们要找出这个范围的浮点位模式,0:0 00000000 00000000000000000000000
                              1:0 01111111 00000000000000000000000
    在上边的这个空间的值直接取0就行

    那么f能表示的最大的合法的规格数是 0 11111110 111111111111111111111111
    超过这个数的就成为越界了

    如果在这个范围内:
    E = exp - bias;

    我们知道M的值的二进制小数是1.xxxxx... 但是下边M的值明显是做了<<23操作的,因此后边就要用E- 23
    M = frac | 0x800000;
    f = M * 2^E 根据这个公式,向0取整

    if (E > 23) {
      num = M << (E - 23);
    } else {
      num = M >> (23 - E);
    }

 */


 /*
 * Compute (float) f
 * If conversion cause overflow or f is NaN, return 0x80000000
 */
int float_f2i(float_bits f) {
  unsigned sig = f >> 31;
  unsigned exp = f >> 23 & 0xFF;
  unsigned frac = f & 0x7FFFFF;
  unsigned bias = 0x7F;

  int num;
  unsigned E;
  unsigned M;

  /*
   * consider positive numbers
   *
   * 0 00000000 00000000000000000000000
   *   ===>
   * 0 01111111 00000000000000000000000
   *   0 <= f < 1
   * get integer 0
   *
   * 0 01111111 00000000000000000000000
   *   ===>
   * 0 (01111111+31) 00000000000000000000000
   *   1 <= f < 2^31
   * integer round to 0
   *
   * 0 (01111111+31) 00000000000000000000000
   *   ===>
   * greater
   *   2^31 <= f < oo
   * return 0x80000000
   */
  if (exp >= 0 && exp < 0 + bias) {
    /* number less than 1 */
    num = 0;
  } else if (exp >= 31 + bias) {
    /* number overflow */
    /* or f < 0 and (int)f == INT_MIN */
    num = 0x80000000;
  } else {
    E = exp - bias;
    M = frac | 0x800000;
    if (E > 23) {
      num = M << (E - 23);
    } else {
      /* whether sig is 1 or 0, round to zero */
      num = M >> (23 - E);
    }
  }

  return sig ? -num : num;
}

2.97

/*
 * float-i2f.c
 */
#include <stdio.h>
#include <assert.h>
#include <limits.h>
#include "float-i2f.h"

/*
 * Assume i > 0
 * calculate i's bit length
 *
 * e.g.
 * 0x3 => 2
 * 0xFF => 8
 * 0x80 => 8
 */
int bits_length(int i) {
  if ((i & INT_MIN) != 0) {
    return 32;
  }

  unsigned u = (unsigned)i;
  int length = 0;
  while (u >= (1<<length)) {
    length++;
  }
  return length;
}

/*
 * generate mask
 * 00000...(32-l) 11111....(l)
 *
 * e.g.
 * 3  => 0x00000007
 * 16 => 0x0000FFFF
 */
unsigned bits_mask(int l) {
  return (unsigned) -1 >> (32-l);
}

/*
 * Compute (float) i
 */
float_bits float_i2f(int i) {
  unsigned sig, exp, frac, rest, exp_sig /* except sig */, round_part;
  unsigned bits, fbits;
  unsigned bias = 0x7F;

  if (i == 0) {
    sig = 0;
    exp = 0;
    frac = 0;
    return sig << 31 | exp << 23 | frac;
  }
  if (i == INT_MIN) {
    sig = 1;
    exp = bias + 31;
    frac = 0;
    return sig << 31 | exp << 23 | frac;
  }

  sig = 0;
  /* 2's complatation */
  if (i < 0) {
    sig = 1;
    i = -i;
  }

  bits = bits_length(i);
  fbits = bits - 1;
  exp = bias + fbits;

  rest = i & bits_mask(fbits);
  if (fbits <= 23) {
    frac = rest << (23 - fbits);
    exp_sig = exp << 23 | frac;
  } else {
    int offset = fbits - 23;
    int round_mid = 1 << (offset - 1);

    round_part = rest & bits_mask(offset);
    frac = rest >> offset;
    exp_sig = exp << 23 | frac;

    /* round to even */
    if (round_part < round_mid) {
      /* nothing */
    } else if (round_part > round_mid) {
      exp_sig += 1;
    } else {
      /* round_part == round_mid */
      if ((frac & 0x1) == 1) {
        /* round to even */
        exp_sig += 1;
      }
    }
  }

  return sig << 31 | exp_sig;
}

总结

代码已上传github深入理解计算机系统第三版第二章作业题答案
如有错误之处,还请指正啊。。。

posted @ 2018-02-01 11:11  马在路上  阅读(28057)  评论(4编辑  收藏  举报