15 手写数字识别-小数据集
.手写数字数据集
- from sklearn.datasets import load_digits
- digits = load_digits()
from sklearn.datasets import load_digits import numpy as np #1.手写数字数据集 digits = load_digits() x_data = digits.data.astype(np.float32) y_data = digits.target.astype(np.float32).reshape(-1, 1)


2.图片数据预处理
- x:归一化MinMaxScaler()
- y:独热编码OneHotEncoder()或to_categorical
- 训练集测试集划分
- 张量结构
# 2.图片数据预处理 from sklearn.preprocessing import MinMaxScaler from sklearn.preprocessing import OneHotEncoder from sklearn.model_selection import train_test_split scaler = MinMaxScaler() x_data = scaler.fit_transform(x_data) print(x_data) x = x_data.reshape(-1, 8, 8, 1) # 转换为图片格式 y = OneHotEncoder().fit_transform(y_data).todense() # 训练集测试集划分 x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=0, stratify=y) print(x_train.shape, x_test.shape, y_train.shape, y_test.shape)

3.设计卷积神经网络结构
- 绘制模型结构图,并说明设计依据。
#3设计卷积神经网络结构 # 绘制模型结构图 from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPool2D model = Sequential() ks = [3, 3] # 卷积核大小 # 一层卷积 model.add(Conv2D(filters=16, kernel_size=ks, padding='same', input_shape=x_train.shape[1:], activation='relu')) # 池化层 model.add(MaxPool2D(pool_size=(2, 2))) model.add(Dropout(0.25)) # 二层卷积 model.add(Conv2D(filters=32, kernel_size=ks, padding='same', activation='relu')) # 池化层 model.add(MaxPool2D(pool_size=(2, 2))) model.add(Dropout(0.25)) # 三层卷积 model.add(Conv2D(filters=64, kernel_size=ks, padding='same', activation='relu')) # 四层卷积 model.add(Conv2D(filters=128, kernel_size=ks, padding='same', activation='relu')) # 池化层 model.add(MaxPool2D(pool_size=(2, 2))) model.add(Dropout(0.25)) # 平坦层 model.add(Flatten()) # 全连接层 model.add(Dense(128, activation='relu')) model.add(Dropout(0.25)) # 激活函数 model.add(Dense(10, activation='softmax')) model.summary()


4.模型训练
# 4.模型训练
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
train_history = model.fit(x=x_train, y=y_train, validation_split=0.2, batch_size=300, epochs=10, verbose=2)
# 定义训练参数可视化
import matplotlib as plt
def show_train_history(train_history, train, validation):
plt.plot(train_history.history[train])
plt.plot(train_history.history[validation])
plt.title('Train History')
plt.ylabel('train')
plt.xlabel('epoch')
plt.legend(['train', 'validation'], loc='upper left')
plt.show()
# 准确率
show_train_history(train_history, 'accuracy', 'val_accuracy')
# 损失率
show_train_history(train_history, 'loss', 'val_loss')


准确率:

损失率:

5.模型评价
- model.evaluate()
- 交叉表与交叉矩阵
- pandas.crosstab
- seaborn.heatmap
#5.模型评价
import pandas as pd
score = model.evaluate(x_test, y_test)[1]
print('模型准确率=',score)
# 预测值
y_pre = model.predict_classes(x_test)
print('预测的y值=',y_pre[:10])
# 交叉表和交叉矩阵
y_test1 = np.argmax(y_test, axis=1).reshape(-1)
y_true = np.array(y_test1)[0]
y_true.shape
# 交叉表查看预测数据与原数据对比
pd.crosstab(y_true, y_pre, rownames=['true'], colnames=['predict'])
# 交叉矩阵
import seaborn as sns
y_test1 = y_test1.tolist()[0]
a = pd.crosstab(np.array(y_test1), y_pre, rownames=['Lables'], colnames=['predict'])
df = pd.DataFrame(a)
print(df)
sns.heatmap(df, annot=True, cmap="Reds", linewidths=0.2, linecolor='G')


预测数据与原数据对比:



浙公网安备 33010602011771号