类加载机制

public class SSClass {
    static {
        System.out.println("SSClass");
    }
}

public class SuperClass extends SSClass {

    static {
        System.out.println("SuperClass init!");
    }

    public static int value = 123;

    public SuperClass() {
        System.out.println("init SuperClass");
    }
}

public class SubClass extends SuperClass {
    static {
        System.out.println("SubClass init");
    }

    static int a;

    public SubClass() {
        System.out.println("init SubClass");
    }
}

public class NotInitialization {
    public static void main(String[] args) {
        System.out.println(SuperClass.value);
    }
}

运行结果:

为什么没有输出SubClass init对于静态字段,只有直接定义这个字段的类才会被初始化,因此通过其子类来引用父类中定义的静态字段,只会触发父类的初始化而不会触发子类的初始化。

一、类加载过程

  类从被加载到虚拟机内存中开始,到卸载出内存为止,他的整个生命周期包括:加载(Loading)、验证(Verification)、准备(Preparation)、解析(Resolution)、初始化(Initialization)、使用(Using)和卸载(Unloading)7个阶段,其中准备、验证、解析9个部分称为连接(Linking)。

加载、验证、准备、初始化和卸载这5个阶段的顺序是确定的,类的加载过程必须按照这种顺序按部就班的开始,而解析则不一定:他在某些情况下可以在初始化阶段之后开始,这是为了支持Java语言的运行时绑定(也称为动态绑定或晚期绑定),

 1、加载

在加载阶段(可以参考java.lang.ClassLoader的loadClass()方法),虚拟机需要完成以下3件事:

1、通过一个类的全限定名来获取定义类的为禁止字节流。

2、将这个类字节流所代表的静态存储结构转化为方法去运行时的数据结构。

3、在内存中生成一个代表这个类的java.lang.Class对象,作为方法区这个类的各种数据的访问入口。

加载阶段和连接阶段的部分内容是交叉进行的,加载阶段尚未完成,连接阶段可能已经开始。但这些夹在加载阶段之中进行的动作,仍然属于连接阶段的内容,这两个阶段的过程仍保持者固定的先后顺序。

2、验证

验证是连接阶段的第一步买这一阶段的目的是为了确保Class文件的字节流中包含的信息符合当前虚拟机的要求,并且不会危害虚拟机自身的安全。

验证阶段大致完成4个阶段的检验动作:

1、文件格式验证:验证字节流是否符合Class方法格式的规范。

2、元数据验证:对字节码描述的信息进行语义分析,以确保其描述的信息符合Java语言规范的要求。

3、字节码验证:通过数据流和控制流分析,确定程序语义是合法的、符合逻辑的。

4、符号引用验证:确保解析动作能够正确执行。

验证阶段是非常重要的,但不是必须的,他对程序运行期没有影响。

3、准备

  准备阶段是正式为类变量分配并设置初始值的阶段,这些变量所使用的内存都放在方法区中进行分配。这时候进行内存分配的仅包括类变量(被static修饰的变量),而不包括实例变量,实例变量将会在对象实例化时随着对象一起分配在堆中。其次,这里所说的初始值“通常情况”下是数据类型的零值:假设一个类变量的定义为:

public static int value = 123;

 

那变量value在准备阶段过后的初始值为0,而不是123,因为这个时候尚未开始执行任何java方法,而把value赋值为123的putstatic指令是程序被编译后,存放于类构造器方法之中,所以把value赋值为123的动作将在初始化阶段才会执行。
至于特殊情况是指:public static final int value = 123,即当类字段的字段属性是ConstantValue时,会在准备阶段初始化为指定的值,所以标注为final之后,value的值在准备阶段初始化为123而非0。
4、解析
  解析阶段是虚拟机将常量池内的符号引用替换为直接引用的过程。解析动作主要针对类或接口、字段、类方法、接口方法、方法类型、方法句柄和调用点限定符7类符号引用进行。
5、初始化
  • 类初始化阶段在类加载过程的最后一步,到了初始化阶段,才真正开始执行类中定义的java程序代码。再准备阶段,变量已经付过一次系统要求的初始值,而在初始化阶段,则根据程序制定的主管计划去初始化类变量和其他资源,或者说:初始化阶段是执行类构造器<init>方法的过程。
  • <clinit>方法是由编译器自动收集类中的所有类变量的赋值动作和静态语句块static{}中的语句合并初始的,编辑器收集的顺序是由语句在源文件中出现的顺序所决定的,静态语句块只能访问到定义在静态语句块之前的变量,定义在他之后的变量,静态语句块可以赋值,但是不能访问。
    public class Test {
        static {
            value = 256;
            System.out.println(value);  //这句编译器会报错:Cannot reference a field before it is defined(非法向前引用)
        }
        public static int value = 123;
    }
  • <clinit>()方法与类实例构造器<init>方法不同,他不需要显示地调用父类构造器,虚拟机会保证在子类<init>()方法执行之前,父类的<clinit>()方法已经执行完毕。由于父类的<clinit>()方法先执行,也就意味者父类中定义的静态语句块要优先于子类的变量赋值操作。
  • <clinit>()方法对于类或者接口来说并不是必能的,如果一个类中没有静态语句块,也没有对变量的赋值操作,那么编译器可以不为这个类生产<clinit>()方法。
  • 接口中不能使用静态语句块,但仍然有变量初始化的赋值操作,因此接口与类一样都会生成<clinit>()方法。但接口与类不同的是,执行接口的<clinit>()方法不需要先执行父接口的<clinit>()方法,只有房父类接口中定义的变量使用时,父接口才会初始化。另外,接口的实现类在初始化是也一样不会执行接口的<clinit>()方法。
  • 虚拟机会保证一个类的<clinit>()方法在多线程环境中被正确的加锁、同步,如果多个线程同时去实例化一个类,那么只会有一个线程去执行这个类的<clinit>()方法,其他线程都需要阻塞等待,知道活动线程执行<clinit>()方法完毕,如果一个类的<clinit>()方法中有耗时很长的操作,就可能造成多个线程阻塞,在实际应用中这种阻塞往往是隐藏的
    public class DealLoopTest {
        static class DeadLoopClass {
            static {
                if(true) { 
                    System.out.println(Thread.currentThread()+"init DeadLoopClass");
                    while(true) {
                    }
                }
            }
        }
    
        public static void main(String[] args) {
            Runnable script = new Runnable(){
                public void run() { 
                    System.out.println(Thread.currentThread()+" start");
                    DeadLoopClass dlc = new DeadLoopClass();
                    System.out.println(Thread.currentThread()+" run over");
                }
            };
    
            Thread thread1 = new Thread(script);
            Thread thread2 = new Thread(script);
            thread1.start();
            thread2.start();
        }
    }

     运行结果:一条线程在死循环以monitor长时间操作,另一条线程在阻塞等待

  • 注意:其中线程虽然会被阻塞,但如果执行<clinit>()方法的那条线程退出<clinit>()方法后,其他线程唤醒只会不会再次进入<clinit>()方法。同一个类加载器下,一个类型只会初始化一次。替换上述静态代码:
    static {
        if(true) {
            System.out.println(Thread.currentThread()+"init DeadLoopClass");
            try {
                Thread.sleep(10);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }
    }

     运行结果:

  • 必须对类进行初始化的情况:
    • 遇到new、getstatic、putstatic、invokestatic这些失调字节码指令时,如果类没有进行过初始化,则需要先触发其初始化。生成这4条指令的最常见的java场景:使用new关键字实例化对象、读取或设置一个类的静态字段(被final修饰、已在编译器吧结果放入常量池的静态字段除外)的时候、以及调用一个类的静态方法的时候。
    • 使用java.lang.reflect包的方法对类进行反射调用的时候,如果类没有进行过初始化,则需要先触发其初始化。
    • 当初始化一个类的时候,如果发现其父类没有进行过初始化,则需要先触发其父类的初始化
    • 当虚拟机启动时,用户需要指定一个要执行的主类(包含main()方法),虚拟机会先初始化这个主类。
    • 如果一个java.lang.invoke.MethodHandle实例最后的解析结果的方法句柄,并且这个方法句柄没有进行初始化,则需要先触发其初始化。
  • 通过数组定义未引用类,不会触发此类的初始化:
    public static void main(String[] args) throws Exception {
        SuperClass[] list = new SuperClass[10];
    }

     运行结果:

    

  • 常量在编译阶段会存入调用类的常量池中,本质上并没有直接引用到定义常量的类,因此不会初始定义常量的类的初始化:
    public class ConstClass {
        static {
            System.out.println("ConstClass init");
        }
    
        public final static String HELLO_WORLD = "hello world";
    }
    
    public class NotInitialization {
        public static void main(String[] args) {
            System.out.println(ConstClass.HELLO_WORLD);
        }
    }

     运行结果:

 
posted @ 2019-04-15 21:56  一叶一落秋  阅读(153)  评论(0)    收藏  举报