Fork me on GitHub

P4137 Rmq Problem / mex (莫队)

题目

P4137 Rmq Problem / mex

解析

莫队算法维护mex,

  • 往里添加数的时候,若添加的数等于\(mex\)\(mex\)就不能等于这个值了,就从这个数开始枚举找\(mex\);若不等于\(mex\),没有影响,因为它之前的所有数都出现过了,又出现一次不会怎样,放在后面又比\(mex\)大,肯定不是\(mex\).
  • 取出数的时候,如果这个数出现的次数变为了\(0\)\(mex\)就和这个数取一个\(min\)

代码

#include <bits/stdc++.h>
using namespace std;
const int N = 1e6 + 10;
int n, m, mex;
int a[N], cnt[N], ans[N];
class node {
	public :
		int l, r, id, bl;
		bool operator < (const node &oth) const {
			return this->bl == oth.bl ? this->r < oth.r : this->l < oth.l;
		}
} e[N];

template<class T>inline void read(T &x) {
	x = 0; int f = 0; char ch = getchar();
	while (!isdigit(ch)) f |= (ch == '-'), ch = getchar();
	while (isdigit(ch)) x = x * 10 + ch - '0', ch = getchar();
	x = f ? -x : x; 
	return ;
} 

inline void add(int x) {
	cnt[a[x]]++;
	int i = mex;
	if (a[x] == mex) while (cnt[i]) i++;
	mex = i;
}

inline void del(int x) {
	cnt[a[x]]--;
	if (cnt[a[x]] == 0) mex = min(mex, a[x]);
}

int main() {
	read(n), read(m);
	int k = sqrt(n);
	for (int i = 1; i <= n; ++i) read(a[i]);
	for (int i = 1, x, y; i <= m; ++i) {
		read(x), read(y);
		e[i] = (node) {x, y, i, x / k + 1};
	}
	sort(e + 1, e + 1 + m);
	int l = 1, r = 0;
	for (int i = 1; i <= m; ++i) {
		int ll = e[i].l, rr = e[i].r;
		while (l < ll) del(l++);
		while (l > ll) add(--l);
		while (r < rr) add(++r);
		while (r > rr) del(r--);
		ans[e[i].id] = mex;
	}
	for (int i = 1; i <= m; ++i) printf("%d\n", ans[i]);
	return 0;
}
posted @ 2019-04-16 16:30  Chrety  阅读(381)  评论(2)    收藏  举报