算法--2023.1.25
1.力扣122--买卖股票的最佳时机2
class Solution {
public int maxProfit(int[] prices) {
int n = prices.length;
int[][] dp = new int[n][2];
//二维动态规划,
dp[0][0] = 0;dp[0][1] = -prices[0];
//dp[i][0]代表当前不持有股票的最大收益,dp[i][1]代表当前持有股票的最大收益
for(int i = 1;i<n;i++){
dp[i][0] = Math.max(dp[i-1][0],dp[i-1][1]+prices[i]);
dp[i][1] = Math.max(dp[i-1][1],dp[i-1][0]-prices[i]);
}
return dp[n-1][0];
}
}
2.力扣309--最佳买卖股票时机含冷冻期
class Solution {
public int maxProfit(int[] prices) {
int n = prices.length;
int[][] dp = new int[n][3];
//三维动态规划
dp[0][0] = 0; dp[0][1] = 0; dp[0][2] = -prices[0];
for(int i = 1;i<n;i++){
//dp[i][0]代表卖出的最大值,
dp[i][0] = Math.max(Math.max(dp[i-1][0],dp[i-1][1]),dp[i-1][2]+prices[i]);
//dp[i][1]代表冷冻期的值,该值只能是上一轮卖出的值
dp[i][1] = dp[i-1][0];
//dp[i][2]代表买入后的最大值,注意实际买入只能在冷冻期后面就是dp[i][1]后面
dp[i][2] = Math.max(dp[i-1][1]-prices[i],dp[i-1][2]);
}
return Math.max(dp[n-1][0],dp[n-1][1]);
}
}
3.acwing2--01背包问题
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int n = in.nextInt(), capcity = in.nextInt();
int[][] nums = new int[n][2];
for(int i = 0;i<n;i++){
int a = in.nextInt(), b = in.nextInt();
nums[i][0] = a;
nums[i][1] = b;
}
System.out.println(packageProblem(nums,capcity));
}
public static int packageProblem(int[][] nums, int capcity){
int[][] dp = new int[nums.length+1][capcity+1];
for(int i = 1;i<=nums.length;i++){
for(int j = 1;j<=capcity;j++){
dp[i][j] = dp[i-1][j];
if(nums[i-1][0]<=j){
dp[i][j] = Math.max(dp[i - 1][j], dp[i - 1][j - nums[i - 1][0]] + nums[i - 1][1]);
}
}
}
int res = 0;
for(int i = 1;i<=capcity;i++){
res = Math.max(res,dp[nums.length][i]);
}
return res;
}
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int n = in.nextInt(), capcity = in.nextInt();
int[][] nums = new int[n][2];
for(int i = 0;i<n;i++){
int a = in.nextInt(), b = in.nextInt();
nums[i][0] = a;
nums[i][1] = b;
}
System.out.println(packageProblem(nums,capcity));
}
public static int packageProblem(int[][] nums, int capcity){
int[] dp = new int[capcity+1];
for(int i = 1;i<=nums.length;i++){
for(int j = capcity;j>=nums[i-1][0];j--){
dp[j] = Math.max(dp[j-nums[i-1][0]] + nums[i-1][1],dp[j]);
}
}
return dp[capcity];
}
}
4.acwing3--完全背包问题
import java.util.Scanner;
public class acwing3 {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int n = in.nextInt(), capcity = in.nextInt();
int[][] nums = new int[n][2];
for(int i = 0;i<n;i++){
nums[i][0] = in.nextInt();
nums[i][1] = in.nextInt();
}
int[] dp = new int[capcity+1];
for(int i = 0;i<n;i++){
for(int j = nums[i][0];j<=capcity;j++){
dp[j] = Math.max(dp[j],dp[j-nums[i][0]] + nums[i][1]);
}
}
System.out.println(dp[capcity]);
}
}
5.力扣322--零钱兑换
class Solution {
public int coinChange(int[] coins, int amount) {
//完全背包问题的动态规划
int n = coins.length;
int[] dp = new int[amount+1];
for(int i = 0;i<=amount;i++){
dp[i] = 0x3f3f3f3f;
}
dp[0] = 0;
for(int i = 0;i<n;i++){
//不同轮代表用到的不同硬币
for(int j = coins[i];j<=amount;j++){
//dp[j]代表这一轮中容量为j的时候的最小硬币个数
//因为这里的硬币是可以重复使用的,所以应该从前向后遍历
dp[j] = Math.min(dp[j],dp[j-coins[i]]+1);
}
System.out.println(dp[amount]);
}
if(dp[amount] == 0x3f3f3f3f){
return -1;
}
return dp[amount];
}
}
理想主义的花终将在现实中绽放

浙公网安备 33010602011771号