基于mykernel 2.0编写一个操作系统内核

1. mykernel 下载并安装

 参考孟老师PPT上的教程,以下为终端命令行详细步骤:

wget https://raw.github.com/mengning/mykernel/master/mykernel-2.0_for_linux-5.4.34.patch
sudo apt install axel
axel -n 20 https://mirrors.edge.kernel.org/pub/linux/kernel/v5.x/linux-5.4.34.tar.xz
xz -d linux-5.4.34.tar.xz
tar -xvf linux-5.4.34.tar
cd linux-5.4.34
patch -p1 < ../mykernel-2.0_for_linux-5.4.34.patch
sudo apt-get install build-essential gcc-multilib
sudo apt install qemu # install QEMU
sudo apt-get install libncurses-dev bison flex libssl-dev libelf-dev
make defconfig # Default configuration is based on 'x86_64_defconfig'
make -j$(nproc)
qemu-system-x86_64 -kernel arch/x86/boot/bzImage

 核心代码为 ./linux-5.4.34/mykernel 文件夹中的 mymain.c 和 myinterrupt.c 文件

 

综上,我们可以了解到,在 mykernel 系统启动后,首先会调用 my_start_kernel 函数,不断循环打印,然后周期性的调用 my_timer_handler 函数。

因此,内核的编写围绕以上两个函数展开即可。

 

2. mykernel 系统内核

(1)参考 PPT 以及老师上课的讲解,在 mykernel 文件夹中添加 mypcb.h (进程描述头文件),并修改 mymain.c 和 myinterrupt.c 中的代码

(2)终端回退到 ./linux-5.4.34 文件夹下,输入如下命令:

make defconfig # Default configuration is based on 'x86_64_defconfig'
make -j$(nproc)
qemu-system-x86_64 -kernel arch/x86/boot/bzImage

   可以看到如下输出:

mykernel 一直在虚拟进程 process0 到 process3 之间轮回切换,从而实现一个简单的时间片轮转操作系统内核。

 

3.关键代码分析

(1)mypcb.h 

#define MAX_TASK_NUM        4
#define KERNEL_STACK_SIZE   1024*2
/* CPU-specific state of this task */
struct Thread {
    unsigned long		ip;
    unsigned long		sp;
};

typedef struct PCB{
    int pid;
    volatile long state;	/* -1 unrunnable, 0 runnable, >0 stopped */
    unsigned long stack[KERNEL_STACK_SIZE];
    /* CPU-specific state of this task */
    struct Thread thread;
    unsigned long task_entry;
    struct PCB *next;
}tPCB;

void my_schedule(void); 

  在该头文件中,定义了进程的基本描述信息 栈顶指针sp 和 指令指针ip,也对进程控制块的数据结构做了相关描述。

  pid:进程标示

  state:进程所处的不同状态,进程刚创建是为-1,表示未运行;被调用时,为0

  stack[KERNEL_STACK_SIZE]:用数组模拟进程的堆栈

  thread:进程的基本描述信息

  task_entry:进程入口函数地址

  next:指向下一个进程的指针

(2)mymain.c

#include <linux/types.h>
#include <linux/string.h>
#include <linux/ctype.h>
#include <linux/tty.h>
#include <linux/vmalloc.h>


#include "mypcb.h"

tPCB task[MAX_TASK_NUM];
tPCB * my_current_task = NULL;
volatile int my_need_sched = 0;

void my_process(void);


void __init my_start_kernel(void)
{
    int pid = 0;
    int i;
    /* Initialize process 0*/
    task[pid].pid = pid;
    task[pid].state = 0;/* -1 unrunnable, 0 runnable, >0 stopped */
    task[pid].task_entry = task[pid].thread.ip = (unsigned long)my_process;
    task[pid].thread.sp = (unsigned long)&task[pid].stack[KERNEL_STACK_SIZE-1];
    task[pid].next = &task[pid];
    /*fork more process */
    for(i=1;i<MAX_TASK_NUM;i++)
    {
        memcpy(&task[i],&task[0],sizeof(tPCB));
        task[i].pid = i;
	    task[i].thread.sp = (unsigned long)(&task[i].stack[KERNEL_STACK_SIZE-1]);
        task[i].next = task[i-1].next;
        task[i-1].next = &task[i];
    }
    /* start process 0 by task[0] */
    pid = 0;
    my_current_task = &task[pid];
	asm volatile(
    	"movq %1,%%rsp\n\t" 	/* set task[pid].thread.sp to rsp */
    	"pushq %1\n\t" 	        /* push rbp */
    	"pushq %0\n\t" 	        /* push task[pid].thread.ip */
    	"ret\n\t" 	            /* pop task[pid].thread.ip to rip */
    	: 
    	: "c" (task[pid].thread.ip),"d" (task[pid].thread.sp)	/* input c or d mean %ecx/%edx*/
	);
} 

int i = 0;

void my_process(void)
{    
    while(1)
    {
        i++;
        if(i%10000000 == 0)
        {
            printk(KERN_NOTICE "this is process %d -\n",my_current_task->pid);
            if(my_need_sched == 1)
            {
                my_need_sched = 0;
        	    my_schedule();
        	}
        	printk(KERN_NOTICE "this is process %d +\n",my_current_task->pid);
        }     
    }
}

   核心函数为__init my_start_kernel,实现了所有进程(在本模拟系统中统一为 my_process 函数)的创建和初始化,而内嵌如下一段汇编代码

asm volatile(
    	"movq %1,%%rsp\n\t" 	/* set task[pid].thread.sp to rsp */
    	"pushq %1\n\t" 	        /* push rbp */
    	"pushq %0\n\t" 	        /* push task[pid].thread.ip */
    	"ret\n\t" 	            /* pop task[pid].thread.ip to rip */
    	: 
    	: "c" (task[pid].thread.ip),"d" (task[pid].thread.sp)	/* input c or d mean %ecx/%edx*/
	);

   该段汇编代码将0号进程的 ip 和 sp 分别存入 rip 和 rsp 寄存器,实现0号进程的加载。

(3)myinterrupt.c

#include <linux/types.h>
#include <linux/string.h>
#include <linux/ctype.h>
#include <linux/tty.h>
#include <linux/vmalloc.h>

#include "mypcb.h"

extern tPCB task[MAX_TASK_NUM];
extern tPCB * my_current_task;
extern volatile int my_need_sched;
volatile int time_count = 0;

/*
 * Called by timer interrupt.
 * it runs in the name of current running process,
 * so it use kernel stack of current running process
 */
void my_timer_handler(void)
{
    if(time_count%1000 == 0 && my_need_sched != 1)
    {
        printk(KERN_NOTICE ">>>my_timer_handler here<<<\n");
        my_need_sched = 1;
    } 
    time_count ++ ;  
    return;  	
}

void my_schedule(void)
{
    tPCB * next;
    tPCB * prev;

    if(my_current_task == NULL 
        || my_current_task->next == NULL)
    {
    	return;
    }
    printk(KERN_NOTICE ">>>my_schedule<<<\n");
    /* schedule */
    next = my_current_task->next;
    prev = my_current_task;
    if(next->state == 0)/* -1 unrunnable, 0 runnable, >0 stopped */
    {        
    	my_current_task = next; 
    	printk(KERN_NOTICE ">>>switch %d to %d<<<\n",prev->pid,next->pid);  
    	/* switch to next process */
    	asm volatile(	
        	"pushq %%rbp\n\t" 	    /* save rbp of prev */
        	"movq %%rsp,%0\n\t" 	/* save rsp of prev */
        	"movq %2,%%rsp\n\t"     /* restore  rsp of next */
        	"movq $1f,%1\n\t"       /* save rip of prev */	
        	"pushq %3\n\t" 
        	"ret\n\t" 	            /* restore  rip of next */
        	"1:\t"                  /* next process start here */
        	"popq %%rbp\n\t"
        	: "=m" (prev->thread.sp),"=m" (prev->thread.ip)
        	: "m" (next->thread.sp),"m" (next->thread.ip)
    	); 
    }  
    return;	
}

   my_timer_handler函数实现了进程的周期性调用,每循环1000次,就通知进程去执行调度函数 my_schedule,关键的汇编代码如下

asm volatile(	
        	"pushq %%rbp\n\t" 	    /* save rbp of prev */
        	"movq %%rsp,%0\n\t" 	/* save rsp of prev */
        	"movq %2,%%rsp\n\t"     /* restore  rsp of next */
        	"movq $1f,%1\n\t"       /* save rip of prev */	
        	"pushq %3\n\t" 
        	"ret\n\t" 	            /* restore  rip of next */
        	"1:\t"                  /* next process start here */
        	"popq %%rbp\n\t"
        	: "=m" (prev->thread.sp),"=m" (prev->thread.ip)
        	: "m" (next->thread.sp),"m" (next->thread.ip)
    	); 

   上述代码,将旧进程的 ip、sp等指针信息保存,并将新进程的 ip、sp 存入相应寄存器,从而实现不同进程之前的切换。

 

4.总结

   通过手动实现 mykernel 操作系统的内核,我学习到了进程的创建、加载以及不同进程之间切换的相关知识。通过内嵌在c语言中的汇编代码,直接对操作系统底层做相应操作,透过现象看本质,着实受益良多。

posted @ 2020-05-08 18:08  lggang  阅读(257)  评论(0编辑  收藏  举报