信源编码:最原始的信院编码就是莫尔斯电码,另外还有ASCII码和电报码都是信源编码。但现代通信应用中常见的信源编码方式有:Huffman编码、算术编码、L-Z编码,这三种都是无损编码,另外还有一些有损的编码方式。信源编码的目标就是使信源减少冗余,更加有效、经济地传输,最常见的应用形式就是压缩。相对地,信道编码是为了对抗信道中的噪音和衰减,通过增加冗余,如校验码等,来提高抗干扰能力以及纠错能力。
信号传输过程:[信源]->[信源编码]->[信道编码]->[信道传输+噪声]->[信道解码]->[信源解码]->[信宿]
一般信息论的书上都会有信源编码和信道编码的具体讲解,包括具体的编码方法。
信道编码:数字信号在传输中往往由于各种原因,使得在传送的数据流中产生误码。所以通过信道编码这一环节,对数码流进行相应的处理,使系统具有一定的纠错能力和抗干扰能力,可极大地避免码流传送中误码的发生。误码的处理技术有纠错、交织、线性内插等。这个过程我们就称之为信道编码过程。提高数据传输效率,降低误码率是信道编码的任务。信道编码的本质是增加通信的可靠性。但信道编码会使有用的信息数据传输减少,信道编码的过程是在源数据码流中加插一些码元,从而达到在接收端进行判错和纠错的目的,这就是我们常常说的开销。这就好象我们运送一批玻璃杯一样,为了保证运送途中不出现打烂玻璃杯的情况,我们通常都用一些泡沫或海棉等物将玻璃杯包装起来,这种包装使玻璃杯所占的容积变大,原来一部车能装5000各玻璃杯的,包装后就只能装4000个了,显然包装的代价使运送玻璃杯的有效个数减少了。同样,在带宽固定的信道中,总的传送码率也是固定的,由于信道编码增加了数据量,其结果只能是以降低传送有用信息码率为代价了。将有用比特数除以总比特数就等于编码效率了,不同的编码方式,其编码效率有所不同。
1、RS编码
RS码即里德-所罗门码,它是能够纠正多个错误的纠错码,RS码为(204,188,t=8),其中t是可抗长度字节数,对应的188符号,监督段为16字节(开销字节段)。实际中实施(255,239,t=8)的RS编码,即在204字节(包括同步字节)前添加51个全“0”字节,产生RS码后丢弃前面51个空字节,形成截短的(204,188)RS码。RS的编码效率是:188/204。
2、卷积码
卷积码非常适用于纠正随机错误,但是,解码算法本身的特性却是:如果在解码过程中发生错误,解码器可能会导致突发性错误。为此在卷积码的上部采用RS码块, RS码适用于检测和校正那些由解码器产生的突发性错误。所以卷积码和RS码结合在一起可以起到相互补偿的作用。卷积码分为两种:
(1)基本卷积码:
基本卷积码编码效率为,η=1/2, 编码效率较低,优点是纠错能力强。
(2)收缩卷积码:
如果传输信道质量较好,为提高编码效率,可以采样收缩截短卷积码。有编码效率为:η=1/2、2/3、3/4、5/6、7/8这几种编码效率的收缩卷积码。
编码效率高,一定带宽内可传输的有效比特率增大,但纠错能力越减弱。
3、Turbo码
1993 年诞生的Turbo 码,单片Turbo 码的编码/解码器,运行速率达40Mb/s。该芯片集成了一个32×32 交织器,其性能和传统的RS 外码和卷积内码的级联一样好。所以Turbo码是一种先进的信道编码技术,由于其不需要进行两次编码,所以其编码效率比传统的RS+卷积码要好。
4、交织
在实际应用中,比特差错经常成串发生,这是由于持续时间较长的衰落谷点会影响到几个连续的比特,而信道编码仅在检测和校正单个差错和不太长的差错串时才最有效(如RS只能纠正8个字节的错误)。为了纠正这些成串发生的比特差错及一些突发错误,可以运用交织技术来分散这些误差,使长串的比特差错变成短串差错,从而可以用前向码对其纠错,例如:在DVB-C系统中,RS(204,188)的纠错能力是8个字节,交织深度为12,那么纠可抗长度为8×12=96个字节的突发错误。
实现交织和解交织一般使用卷积方式。
交织技术对已编码的信号按一定规则重新排列,解交织后突发性错误在时间上被分散,使其类似于独立发生的随机错误,从而前向纠错编码可以有效的进行纠错,前向纠错码加交积的作用可以理解为扩展了前向纠错的可抗长度字节。纠错能力强的编码一般要求的交织深度相对较低。纠错能力弱的则要求更深的交织深度。
信号传输过程:[信源]->[信源编码]->[信道编码]->[信道传输+噪声]->[信道解码]->[信源解码]->[信宿]
一般信息论的书上都会有信源编码和信道编码的具体讲解,包括具体的编码方法。
信道编码:数字信号在传输中往往由于各种原因,使得在传送的数据流中产生误码。所以通过信道编码这一环节,对数码流进行相应的处理,使系统具有一定的纠错能力和抗干扰能力,可极大地避免码流传送中误码的发生。误码的处理技术有纠错、交织、线性内插等。这个过程我们就称之为信道编码过程。提高数据传输效率,降低误码率是信道编码的任务。信道编码的本质是增加通信的可靠性。但信道编码会使有用的信息数据传输减少,信道编码的过程是在源数据码流中加插一些码元,从而达到在接收端进行判错和纠错的目的,这就是我们常常说的开销。这就好象我们运送一批玻璃杯一样,为了保证运送途中不出现打烂玻璃杯的情况,我们通常都用一些泡沫或海棉等物将玻璃杯包装起来,这种包装使玻璃杯所占的容积变大,原来一部车能装5000各玻璃杯的,包装后就只能装4000个了,显然包装的代价使运送玻璃杯的有效个数减少了。同样,在带宽固定的信道中,总的传送码率也是固定的,由于信道编码增加了数据量,其结果只能是以降低传送有用信息码率为代价了。将有用比特数除以总比特数就等于编码效率了,不同的编码方式,其编码效率有所不同。
1、RS编码
RS码即里德-所罗门码,它是能够纠正多个错误的纠错码,RS码为(204,188,t=8),其中t是可抗长度字节数,对应的188符号,监督段为16字节(开销字节段)。实际中实施(255,239,t=8)的RS编码,即在204字节(包括同步字节)前添加51个全“0”字节,产生RS码后丢弃前面51个空字节,形成截短的(204,188)RS码。RS的编码效率是:188/204。
2、卷积码
卷积码非常适用于纠正随机错误,但是,解码算法本身的特性却是:如果在解码过程中发生错误,解码器可能会导致突发性错误。为此在卷积码的上部采用RS码块, RS码适用于检测和校正那些由解码器产生的突发性错误。所以卷积码和RS码结合在一起可以起到相互补偿的作用。卷积码分为两种:
(1)基本卷积码:
基本卷积码编码效率为,η=1/2, 编码效率较低,优点是纠错能力强。
(2)收缩卷积码:
如果传输信道质量较好,为提高编码效率,可以采样收缩截短卷积码。有编码效率为:η=1/2、2/3、3/4、5/6、7/8这几种编码效率的收缩卷积码。
编码效率高,一定带宽内可传输的有效比特率增大,但纠错能力越减弱。
3、Turbo码
1993 年诞生的Turbo 码,单片Turbo 码的编码/解码器,运行速率达40Mb/s。该芯片集成了一个32×32 交织器,其性能和传统的RS 外码和卷积内码的级联一样好。所以Turbo码是一种先进的信道编码技术,由于其不需要进行两次编码,所以其编码效率比传统的RS+卷积码要好。
4、交织
在实际应用中,比特差错经常成串发生,这是由于持续时间较长的衰落谷点会影响到几个连续的比特,而信道编码仅在检测和校正单个差错和不太长的差错串时才最有效(如RS只能纠正8个字节的错误)。为了纠正这些成串发生的比特差错及一些突发错误,可以运用交织技术来分散这些误差,使长串的比特差错变成短串差错,从而可以用前向码对其纠错,例如:在DVB-C系统中,RS(204,188)的纠错能力是8个字节,交织深度为12,那么纠可抗长度为8×12=96个字节的突发错误。
实现交织和解交织一般使用卷积方式。
交织技术对已编码的信号按一定规则重新排列,解交织后突发性错误在时间上被分散,使其类似于独立发生的随机错误,从而前向纠错编码可以有效的进行纠错,前向纠错码加交积的作用可以理解为扩展了前向纠错的可抗长度字节。纠错能力强的编码一般要求的交织深度相对较低。纠错能力弱的则要求更深的交织深度。
浙公网安备 33010602011771号