基于mykernel 2.0编写一个操作系统内核
一、实验环境配置
1.操作系统环境
阿里云Ubuntu 16.04


2.内核环境配置
按照https://github.com/mengning/mykernel上的内容输入如下命令:
wget https://raw.github.com/mengning/mykernel/master/mykernel-2.0_for_linux-5.4.34.patch sudo apt install axel axel -n 20 https://mirrors.edge.kernel.org/pub/linux/kernel/v5.x/linux-5.4.34.tar.xz xz -d linux-5.4.34.tar.xz tar -xvf linux-5.4.34.tar cd linux-5.4.34 patch -p1 < ../mykernel-2.0_for_linux-5.4.34.patch sudo apt install build-essential libncurses-dev bison flex libssl-dev libelf-dev make defconfig # Default configuration is based on 'x86_64_defconfig' make -j$(nproc) sudo apt install qemu # install QEMU qemu-system-x86_64 -kernel arch/x86/boot/bzImage
运行结果如下:

二、编写操作系统内核
1.内核编写先验知识
首先,进入mykernel目录可以看到qemu窗口输出的内容的代码mymain.c和myinterrupt.c

查看mymain.c和myinterrcupt.c的代码内容:
# mymain.c void __init my_start_kernel(void) { int i = 0; while(1) { i++; if(i%100000 == 0) pr_notice("my_start_kernel here %d \n",i); } }
# myinterrupt.c void my_timer_handler(void) { pr_notice("\n>>>>>>>>>>>>>>>>>my_timer_handler here<<<<<<<<<<<<<<<<<<\n\n"); }
可知mymain.c中为一个while一个死循环,每当计数器i为10000的倍数时打印相应内容,而myinterrupt.c则是由时钟中断触发,触发时会打印相应内容提示时钟中断触发。
我们的任务即为在mymain.c基础上继续写进程描述PCB和进程链表管理等代码,在myinterrupt.c的基础上完成进程切换代码,这样即可完成一个可运行的小OS kernel。
2.编写内核代码
首先,要进行进程切换,需要有一个描述进程的对象,linux中采用进程控制块pcb作为进程实体对象,下面为定义PCB的头文件代码:
/* * linux/mykernel/mypcb.h * Kernel internal PCB types */ #define MAX_TASK_NUM 4 //最大task数 #define KERNEL_STACK_SIZE 1024*2 //进程堆栈容量 /* CPU-specific state of this task */ struct Thread { unsigned long ip; //进程代码段指针 unsigned long sp; //进程栈顶指针 }; typedef struct PCB{ int pid; //进程的id volatile long state; /* 进程状态 -1 unrunnable, 0 runnable, >0 stopped */ unsigned long stack[KERNEL_STACK_SIZE]; //进程堆栈 /* CPU-specific state of this task */ struct Thread thread; unsigned long task_entry; //进程入口, struct PCB *next; //指向下一个PCB的指针,PCB间用链表连接 }tPCB; //调度函数 void my_schedule(void);
其次,修改mymain.c
/* * linux/mykernel/mymain.c * Kernel internal my_start_kernel */ #include <linux/types.h> #include <linux/string.h> #include <linux/ctype.h> #include <linux/tty.h> #include <linux/vmalloc.h> #include "mypcb.h" tPCB task[MAX_TASK_NUM]; tPCB * my_current_task = NULL; volatile int my_need_sched = 0; //进程是否需要切换的标志 void my_process(void); void __init my_start_kernel(void) { int pid = 0; int i; /* Initialize process 0*/ task[pid].pid = pid; task[pid].state = 0;/* -1 unrunnable, 0 runnable, >0 stopped */ task[pid].task_entry = task[pid].thread.ip = (unsigned long)my_process; task[pid].thread.sp = (unsigned long)&task[pid].stack[KERNEL_STACK_SIZE-1]; task[pid].next = &task[pid]; /*fork more process */ //模拟fork新建一个进程并将进程0的PCB内容赋给进程i for(i=1;i<MAX_TASK_NUM;i++) { memcpy(&task[i],&task[0],sizeof(tPCB)); task[i].pid = i; task[i].thread.sp = (unsigned long)(&task[i].stack[KERNEL_STACK_SIZE-1]); task[i].next = task[i-1].next; task[i-1].next = &task[i]; } /* start process 0 by task[0] */ pid = 0; //进程切换 my_current_task = &task[pid]; asm volatile( "movq %1,%%rsp\n\t" /* set task[pid].thread.sp to rsp */ "pushq %1\n\t" /* push rbp */ "pushq %0\n\t" /* push task[pid].thread.ip */ "ret\n\t" /* pop task[pid].thread.ip to rip */ : : "c" (task[pid].thread.ip),"d" (task[pid].thread.sp) /* input c or d mean %ecx/%edx*/ ); } int i = 0; void my_process(void) { while(1) { i++; if(i%10000000 == 0) { printk(KERN_NOTICE "this is process %d -\n",my_current_task->pid); if(my_need_sched == 1) { my_need_sched = 0; my_schedule(); } printk(KERN_NOTICE "this is process %d +\n",my_current_task->pid); } } }
最后修改myinterrupt.c
/* * linux/mykernel/myinterrupt.c * Kernel internal my_timer_handler */ #include <linux/types.h> #include <linux/string.h> #include <linux/ctype.h> #include <linux/tty.h> #include <linux/vmalloc.h> #include "mypcb.h" extern tPCB task[MAX_TASK_NUM]; extern tPCB * my_current_task; extern volatile int my_need_sched; volatile int time_count = 0; /* * Called by timer interrupt. * it runs in the name of current running process, * so it use kernel stack of current running process */ void my_timer_handler(void) { //计数,每当计数值为1000倍数时将允许进程切换 if(time_count%1000 == 0 && my_need_sched != 1) { printk(KERN_NOTICE ">>>my_timer_handler here<<<\n"); my_need_sched = 1; } time_count ++ ; return; } void my_schedule(void) { tPCB * next; tPCB * prev; if(my_current_task == NULL || my_current_task->next == NULL) { return; } printk(KERN_NOTICE ">>>my_schedule<<<\n"); /* schedule */ next = my_current_task->next; prev = my_current_task; //若下一个进程state为0则说明下一进程可运行,执行切换操作 if(next->state == 0)/* -1 unrunnable, 0 runnable, >0 stopped */ { my_current_task = next; printk(KERN_NOTICE ">>>switch %d to %d<<<\n",prev->pid,next->pid); /* switch to next process */ asm volatile( "pushq %%rbp\n\t" /* save rbp of prev */ "movq %%rsp,%0\n\t" /* save rsp of prev */ "movq %2,%%rsp\n\t" /* restore rsp of next */ "movq $1f,%1\n\t" /* save rip of prev */ "pushq %3\n\t" "ret\n\t" /* restore rip of next */ "1:\t" /* next process start here */ "popq %%rbp\n\t" : "=m" (prev->thread.sp),"=m" (prev->thread.ip) : "m" (next->thread.sp),"m" (next->thread.ip) ); } return; }
修改完代码后执行make命令重新编译一次,再次执行qemu-system-x86_64 -kernel arch/x86/boot/bzImage命令可得到如下结果:

三、简要分析操作系统内核核心功能及运行工作机制
首先需要明白的是,操作系统内核先将进程0的PCB块初始化并让其他的进程fork进程0,之后操作系统内核会不断地执行mymain.c中的while(1)死循环,而由while(1)中的代码可知当进程调度标志my_nedd_sched为1后便执行进程调度的相应代码(my_schedule):
if(my_need_sched == 1) { my_need_sched = 0; my_schedule(); }
而my_need_sched则是在myinterrupt.c中根据时钟中断来置位的:
if(time_count%1000 == 0 && my_need_sched != 1) { printk(KERN_NOTICE ">>>my_timer_handler here<<<\n"); my_need_sched = 1; }
之后再来了解进程调度的相应代码:
void my_schedule(void) { tPCB * next; tPCB * prev; if(my_current_task == NULL || my_current_task->next == NULL) { return; } printk(KERN_NOTICE ">>>my_schedule<<<\n"); /* schedule */ next = my_current_task->next; prev = my_current_task; //若下一个进程state为0则说明下一进程可运行,执行切换操作 if(next->state == 0)/* -1 unrunnable, 0 runnable, >0 stopped */ { my_current_task = next; printk(KERN_NOTICE ">>>switch %d to %d<<<\n",prev->pid,next->pid); /* switch to next process */ asm volatile( "pushq %%rbp\n\t" /* save rbp of prev */ "movq %%rsp,%0\n\t" /* save rsp of prev */ "movq %2,%%rsp\n\t" /* restore rsp of next */ "movq $1f,%1\n\t" /* save rip of prev */ "pushq %3\n\t" "ret\n\t" /* restore rip of next */ "1:\t" /* next process start here */ "popq %%rbp\n\t" : "=m" (prev->thread.sp),"=m" (prev->thread.ip) : "m" (next->thread.sp),"m" (next->thread.ip) ); } return; }
可见此处进程调度是按照进程在链表中的顺序依次进入cpu执行,大致步骤就是先保存前一进程的rbp和rsp,之后将rsp指向新进程的堆栈的sp指针,保存prev进程当前RIP寄存器值到prev->thread.ip(即前一进程的代码段),这里的$1f解释为24行1:的地址,实际上这是at&t一种语法,然后将新进程的代码指针ip入栈并随后将压⼊栈中的代码指针ip放⼊RIP寄存器,最后将新进程堆栈基地址从堆栈中恢复到RBP寄存器中。以上便是操作系统内核的简单的运行机制。
浙公网安备 33010602011771号