{POJ}{3925}{Minimal Ratio Tree}{最小生成树}
题意:给定完全无向图,求其中m个子节点,要求Sum(edge)/Sum(node)最小。
思路:由于N很小,枚举所有可能的子节点可能情况,然后求MST,memset()在POJ G++里面需要cstring头文件。
#include <iostream>
#include <vector>
#include <map>
#include <cmath>
#include <memory>
#include <algorithm>
#include <cstdio>
#include <cstdlib>
using namespace std;
const int MAXN = 100;
const int INF = 1<<30;
#define CLR(x,y) memset(x,y,sizeof(x))
#define MIN(m,v) (m)<(v)?(m):(v)
#define MAX(m,v) (m)>(v)?(m):(v)
#define ABS(x) ((x)>0?(x):-(x))
#define rep(i,x,y) for(i=x;i<y;++i)
int n,m,k;
double ans = 0;
int select[MAXN];
int g[MAXN][MAXN];
int val[MAXN];
int visit[MAXN];
double dist[MAXN];
int ind[MAXN];
double Prim()
{
int i,j,tmp,mark_i;
int mark_min;
int sum_node = 0;
int sum_edge = 0;
for(i = 0; i < n; ++i)
{
dist[i] = INF;
visit[i] = 0;
}
for(i = 0; i < n; ++i)
if(select[i]>0)
{
dist[i] = 0;
break;
}
int cnt = 0;
for(i = 0; i < n; ++i,++cnt)
{
if(cnt>=m) break;
mark_min = INF;
for(j = 0; j < n; ++j)
{
if(select[j]>0 && !visit[j] && mark_min>dist[j])
{
mark_min = dist[j];
mark_i = j;
}
}
visit[mark_i] = 1;
sum_edge += dist[mark_i];
for( j = 0; j < n; ++j)
{
if(visit[j]==0 && select[j]>0 && dist[j] > g[mark_i][j])
dist[j] = g[mark_i][j];
}
}
for( i = 0; i < n; ++i)
if(select[i] > 0 )
sum_node += val[i];
return double(sum_edge)/sum_node;
}
int DFS(int cur, int deep)
{
double res = INF;
select[cur] = 1;
if(deep < m)
{
for(int i = cur+1; i < n; ++i)
{
DFS(i,deep+1);
}
}
if(deep == m)
{
res = Prim();
if(res < ans)
{
ans = res;
for(int i = 0; i < n; ++i)
ind[i] = select[i];
}
}
select[cur] = 0;
return 0;
}
int Solve()
{
while(scanf("%d%d",&n,&m)!=EOF)
{
if(n == 0 && m == 0) break;
for(int i = 0 ; i < n; ++i)
scanf("%d",&val[i]);
for(int i = 0; i < n; ++i)
for(int j = 0; j < n; ++j)
{
scanf("%d",&g[i][j]);
}
CLR(select,0);
ans = INF;
for(int i = 0 ; i < n; ++i)
DFS(i,1);
int tag = 0;
for(int i = 0; i < n; ++i)
if(ind[i] > 0)
if(tag == 0)
{
printf("%d",i+1);
tag = 1;
}
else
printf(" %d",i+1);
printf("\n");
}
return 0;
}
int main()
{
Solve();
return 0;
}
浙公网安备 33010602011771号