异步编程_应用场景

异步编程应用场景

1. 数据治理场景

  1.1 异步数据质量检查系统

import java.util.concurrent.CompletableFuture;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.List;
import java.util.Map;
import java.util.stream.Collectors;

public class AsyncDataGovernanceService {
    private final ExecutorService executorService;
    private final int maxConcurrentTasks;
    
    public AsyncDataGovernanceService(int maxConcurrentTasks) {
        this.maxConcurrentTasks = maxConcurrentTasks;
        this.executorService = Executors.newFixedThreadPool(maxConcurrentTasks);
    }
    
    public CompletableFuture<DataQualityResult> checkDataQuality(String datasetId, String tableName) {
        return CompletableFuture.supplyAsync(() -> {
            try {
                // 模拟数据质量检查
                Thread.sleep(100);
                
                return new DataQualityResult(
                    datasetId,
                    tableName,
                    0.95,
                    System.currentTimeMillis()
                );
            } catch (InterruptedException e) {
                Thread.currentThread().interrupt();
                throw new RuntimeException("Quality check interrupted", e);
            }
        }, executorService);
    }
    
    public CompletableFuture<List<DataQualityResult>> batchQualityCheck(
            List<String> datasets, List<String> tables) {
        
        List<CompletableFuture<DataQualityResult>> futures = datasets.stream()
            .flatMap(dataset -> tables.stream()
                .map(table -> checkDataQuality(dataset, table)))
            .collect(Collectors.toList());
        
        return CompletableFuture.allOf(futures.toArray(new CompletableFuture[0]))
            .thenApply(v -> futures.stream()
                .map(CompletableFuture::join)
                .collect(Collectors.toList()));
    }
    
    public void shutdown() {
        executorService.shutdown();
    }
}

class DataQualityResult {
    private String datasetId;
    private String tableName;
    private double qualityScore;
    private long timestamp;
    
    // 构造函数和getter/setter方法
    public DataQualityResult(String datasetId, String tableName, double qualityScore, long timestamp) {
        this.datasetId = datasetId;
        this.tableName = tableName;
        this.qualityScore = qualityScore;
        this.timestamp = timestamp;
    }
    
    // getters...
}

  1.2 异步数据血缘追踪系统

// 基于Springboot与Kafka
@Service
public class AsyncDataLineageService {
    
    @Autowired
    private KafkaTemplate<String, String> kafkaTemplate;
    
    @Autowired
    private RedisTemplate<String, Object> redisTemplate;
    
    @Async("lineageExecutor")
    public CompletableFuture<Void> trackDataLineage(DataLineageEvent event) {
        try {
            // 1. 异步发送到Kafka
            kafkaTemplate.send("data-lineage-topic", event.getDatasetId(), 
                JsonUtils.toJson(event));
            
            // 2. 更新Redis缓存
            String key = "lineage:" + event.getDatasetId();
            redisTemplate.opsForList().leftPush(key, event);
            redisTemplate.expire(key, Duration.ofHours(24));
            
            // 3. 异步更新Neo4j图数据库
            updateGraphDatabase(event);
            
            return CompletableFuture.completedFuture(null);
        } catch (Exception e) {
            return CompletableFuture.failedFuture(e);
        }
    }
    
    @Async
    private void updateGraphDatabase(DataLineageEvent event) {
        // Neo4j异步更新逻辑
        try (Session session = neo4jDriver.session()) {
            session.writeTransactionAsync(tx -> {
                String query = """
                    MERGE (source:Dataset {id: $sourceId})
                    MERGE (target:Dataset {id: $targetId})
                    MERGE (source)-[:FLOWS_TO {timestamp: $timestamp, operation: $operation}]->(target)
                    """;
                
                return tx.runAsync(query, 
                    Values.parameters(
                        "sourceId", event.getSourceId(),
                        "targetId", event.getTargetId(),
                        "timestamp", event.getTimestamp(),
                        "operation", event.getOperation()
                    ));
            });
        }
    }
}

  1.3 实时数据治理监控系统

// 基于Flink与Kafka
public class RealTimeDataGovernanceJob {
    
    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(4);
        
        // 配置Kafka消费者
        Properties kafkaProps = new Properties();
        kafkaProps.setProperty("bootstrap.servers", "localhost:9092");
        kafkaProps.setProperty("group.id", "data-governance-group");
        
        FlinkKafkaConsumer<String> consumer = new FlinkKafkaConsumer<>(
            "data-events", new SimpleStringSchema(), kafkaProps);
        
        DataStream<String> dataStream = env.addSource(consumer);
        
        // 异步数据治理处理
        dataStream
            .map(new DataEventParser())
            .keyBy(DataEvent::getDatasetId)
            .window(TumblingProcessingTimeWindows.of(Time.minutes(1)))
            .aggregate(new DataQualityAggregator())
            .addSink(new AsyncDataGovernanceSink());
        
        env.execute("Real-time Data Governance Job");
    }
}

class AsyncDataGovernanceSink extends RichSinkFunction<DataQualityMetrics> {
    private AsyncHttpClient httpClient;
    
    @Override
    public void open(Configuration parameters) throws Exception {
        httpClient = new AsyncHttpClient();
    }
    
    @Override
    public void invoke(DataQualityMetrics metrics, Context context) throws Exception {
        // 异步发送治理指标
        CompletableFuture<Void> future = CompletableFuture.runAsync(() -> {
            try {
                // 发送到监控系统
                httpClient.post("/api/governance/metrics", metrics);
                
                // 检查阈值并发送告警
                if (metrics.getQualityScore() < 0.8) {
                    sendAlert(metrics);
                }
            } catch (Exception e) {
                // 错误处理
                logger.error("Failed to send metrics", e);
            }
        });
        
        // 可选:等待完成或设置超时
        future.orTimeout(5, TimeUnit.SECONDS);
    }
    
    private void sendAlert(DataQualityMetrics metrics) {
        // 异步发送告警逻辑
    }
}

2. 金融系统场景

  2.1 风控决策引擎

@Service
public class RiskAssessmentService {
    
    private final ExecutorService executor = ForkJoinPool.commonPool();
    
    public CompletableFuture<RiskDecision> assessRisk(LoanApplication application) {
        // 并行执行多种风控检查
        CompletableFuture<CreditScore> creditScoreFuture = CompletableFuture
            .supplyAsync(() -> getCreditScore(application.getIdNumber()), executor);
            
        CompletableFuture<BlacklistResult> blacklistFuture = CompletableFuture
            .supplyAsync(() -> checkBlacklist(application.getIdNumber()), executor);
            
        CompletableFuture<IncomeVerification> incomeFuture = CompletableFuture
            .supplyAsync(() -> verifyIncome(application), executor);
            
        CompletableFuture<DebtRatio> debtRatioFuture = CompletableFuture
            .supplyAsync(() -> calculateDebtRatio(application), executor);
            
        CompletableFuture<BehaviorScore> behaviorFuture = CompletableFuture
            .supplyAsync(() -> analyzeBehavior(application.getIdNumber()), executor);
        
        // 组合所有风控结果
        return CompletableFuture.allOf(
            creditScoreFuture, blacklistFuture, incomeFuture, 
            debtRatioFuture, behaviorFuture
        ).thenApply(v -> {
            RiskDecision decision = new RiskDecision();
            
            try {
                CreditScore creditScore = creditScoreFuture.get();
                BlacklistResult blacklist = blacklistFuture.get();
                IncomeVerification income = incomeFuture.get();
                DebtRatio debtRatio = debtRatioFuture.get();
                BehaviorScore behavior = behaviorFuture.get();
                
                // 综合决策逻辑
                decision = makeDecision(creditScore, blacklist, income, debtRatio, behavior);
                
            } catch (Exception e) {
                log.error("风控评估异常", e);
                decision.setResult(RiskResult.REJECT);
                decision.setReason("系统异常");
            }
            
            return decision;
        });
    }
    
    private RiskDecision makeDecision(CreditScore creditScore, BlacklistResult blacklist, 
                                    IncomeVerification income, DebtRatio debtRatio, 
                                    BehaviorScore behavior) {
        RiskDecision decision = new RiskDecision();
        
        // 一票否决项
        if (blacklist.isInBlacklist()) {
            decision.setResult(RiskResult.REJECT);
            decision.setReason("黑名单用户");
            return decision;
        }
        
        // 综合评分
        double totalScore = creditScore.getScore() * 0.4 + 
                           income.getScore() * 0.3 + 
                           behavior.getScore() * 0.3;
        
        if (totalScore >= 80 && debtRatio.getRatio() < 0.5) {
            decision.setResult(RiskResult.APPROVE);
            decision.setAmount(calculateApprovalAmount(totalScore, income));
        } else if (totalScore >= 60) {
            decision.setResult(RiskResult.MANUAL_REVIEW);
            decision.setReason("需要人工审核");
        } else {
            decision.setResult(RiskResult.REJECT);
            decision.setReason("综合评分不足");
        }
        
        return decision;
    }
}

  2.2 实时行情数据处理

@Service
public class MarketDataProcessor {
    
    private final ExecutorService executor = Executors.newFixedThreadPool(50);
    
    public CompletableFuture<MarketSummary> getMarketSummary(String symbol) {
        // 并行获取不同维度的市场数据
        CompletableFuture<Quote> quoteFuture = CompletableFuture
            .supplyAsync(() -> getLatestQuote(symbol), executor);
            
        CompletableFuture<List<Trade>> tradesFuture = CompletableFuture
            .supplyAsync(() -> getRecentTrades(symbol), executor);
            
        CompletableFuture<OrderBook> orderBookFuture = CompletableFuture
            .supplyAsync(() -> getOrderBook(symbol), executor);
            
        CompletableFuture<TechnicalIndicators> technicalFuture = CompletableFuture
            .supplyAsync(() -> calculateTechnicalIndicators(symbol), executor);
            
        CompletableFuture<NewsImpact> newsFuture = CompletableFuture
            .supplyAsync(() -> analyzeNewsImpact(symbol), executor);
        
        return CompletableFuture.allOf(
            quoteFuture, tradesFuture, orderBookFuture, technicalFuture, newsFuture
        ).thenApply(v -> {
            MarketSummary summary = new MarketSummary();
            
            try {
                Quote quote = quoteFuture.get();
                List<Trade> trades = tradesFuture.get();
                OrderBook orderBook = orderBookFuture.get();
                TechnicalIndicators technical = technicalFuture.get();
                NewsImpact news = newsFuture.get();
                
                summary.setSymbol(symbol);
                summary.setQuote(quote);
                summary.setVolume(trades.stream().mapToLong(Trade::getVolume).sum());
                summary.setSpread(orderBook.getSpread());
                summary.setTechnicalIndicators(technical);
                summary.setNewsImpact(news);
                summary.setTimestamp(System.currentTimeMillis());
                
            } catch (Exception e) {
                log.error("获取市场数据失败: " + symbol, e);
                summary.setError("数据获取失败");
            }
            
            return summary;
        });
    }
}

3. 电商系统场景

  3.1 商品详情页面聚合

@Service
public class ProductDetailService {
    
    @Autowired
    private ProductService productService;
    @Autowired
    private InventoryService inventoryService;
    @Autowired
    private PriceService priceService;
    @Autowired
    private ReviewService reviewService;
    @Autowired
    private RecommendationService recommendationService;
    
    private final ExecutorService executor = Executors.newFixedThreadPool(20);
    
    public CompletableFuture<ProductDetailVO> getProductDetail(Long productId) {
        // 并行获取商品各种信息
        CompletableFuture<Product> productFuture = CompletableFuture
            .supplyAsync(() -> productService.getById(productId), executor);
            
        CompletableFuture<Inventory> inventoryFuture = CompletableFuture
            .supplyAsync(() -> inventoryService.getStock(productId), executor);
            
        CompletableFuture<Price> priceFuture = CompletableFuture
            .supplyAsync(() -> priceService.getPrice(productId), executor);
            
        CompletableFuture<List<Review>> reviewsFuture = CompletableFuture
            .supplyAsync(() -> reviewService.getReviews(productId, 0, 10), executor);
            
        CompletableFuture<List<Product>> recommendationsFuture = CompletableFuture
            .supplyAsync(() -> recommendationService.getRecommendations(productId), executor);
        
        // 组合所有结果
        return productFuture.thenCombine(inventoryFuture, (product, inventory) -> {
            ProductDetailVO vo = new ProductDetailVO();
            vo.setProduct(product);
            vo.setStock(inventory.getStock());
            return vo;
        }).thenCombine(priceFuture, (vo, price) -> {
            vo.setPrice(price.getAmount());
            vo.setDiscount(price.getDiscount());
            return vo;
        }).thenCombine(reviewsFuture, (vo, reviews) -> {
            vo.setReviews(reviews);
            vo.setAverageRating(reviews.stream()
                .mapToDouble(Review::getRating)
                .average()
                .orElse(0.0));
            return vo;
        }).thenCombine(recommendationsFuture, (vo, recommendations) -> {
            vo.setRecommendations(recommendations);
            return vo;
        }).exceptionally(ex -> {
            log.error("获取商品详情失败", ex);
            return createDefaultProductDetail(productId);
        });
    }
}

  3.2 订单处理流程

@Service
public class OrderProcessService {
    
    public CompletableFuture<OrderResult> processOrder(OrderRequest request) {
        return CompletableFuture
            .supplyAsync(() -> validateOrder(request))
            .thenCompose(validOrder -> checkInventory(validOrder))
            .thenCompose(checkedOrder -> calculatePrice(checkedOrder))
            .thenCompose(pricedOrder -> processPayment(pricedOrder))
            .thenCompose(paidOrder -> reserveInventory(paidOrder))
            .thenCompose(reservedOrder -> createOrder(reservedOrder))
            .thenApplyAsync(order -> {
                // 异步发送通知,不影响主流程
                sendNotificationAsync(order);
                return OrderResult.success(order);
            })
            .exceptionally(ex -> {
                log.error("订单处理失败", ex);
                return OrderResult.failure(ex.getMessage());
            });
    }
    
    private CompletableFuture<Order> processPayment(Order order) {
        return CompletableFuture.supplyAsync(() -> {
            // 调用支付服务
            PaymentResult result = paymentService.pay(order.getPaymentInfo());
            if (result.isSuccess()) {
                order.setPaymentStatus(PaymentStatus.PAID);
                return order;
            } else {
                throw new PaymentException("支付失败: " + result.getMessage());
            }
        });
    }
    
    private void sendNotificationAsync(Order order) {
        // 异步发送多种通知,不阻塞主流程
        CompletableFuture.allOf(
            CompletableFuture.runAsync(() -> smsService.sendOrderConfirmation(order)),
            CompletableFuture.runAsync(() -> emailService.sendOrderConfirmation(order)),
            CompletableFuture.runAsync(() -> pushService.sendOrderNotification(order))
        ).exceptionally(ex -> {
            log.warn("发送通知失败", ex);
            return null;
        });
    }
}

4. 社交媒体场景

  4.1 用户动态流生成

@Service
public class FeedService {
    
    public CompletableFuture<UserFeed> generateUserFeed(Long userId, int page, int size) {
        // 并行获取用户相关数据
        CompletableFuture<User> userFuture = CompletableFuture
            .supplyAsync(() -> userService.getById(userId));
            
        CompletableFuture<List<Long>> followingFuture = CompletableFuture
            .supplyAsync(() -> followService.getFollowingIds(userId));
            
        CompletableFuture<List<String>> interestsFuture = CompletableFuture
            .supplyAsync(() -> userService.getUserInterests(userId));
        
        return followingFuture.thenCompose(followingIds -> {
            // 基于关注列表获取内容
            CompletableFuture<List<Post>> followingPostsFuture = CompletableFuture
                .supplyAsync(() -> postService.getPostsByUsers(followingIds, page, size));
                
            return followingPostsFuture.thenCombine(interestsFuture, (posts, interests) -> {
                // 基于兴趣推荐内容
                CompletableFuture<List<Post>> recommendedPostsFuture = CompletableFuture
                    .supplyAsync(() -> recommendationService.getRecommendedPosts(userId, interests));
                    
                return recommendedPostsFuture.thenApply(recommendedPosts -> {
                    UserFeed feed = new UserFeed();
                    feed.setUserId(userId);
                    
                    // 合并和排序内容
                    List<Post> allPosts = new ArrayList<>();
                    allPosts.addAll(posts);
                    allPosts.addAll(recommendedPosts);
                    
                    // 按时间和相关性排序
                    List<Post> sortedPosts = allPosts.stream()
                        .sorted((p1, p2) -> calculateFeedScore(p2, userId) - calculateFeedScore(p1, userId))
                        .limit(size)
                        .collect(Collectors.toList());
                    
                    feed.setPosts(sortedPosts);
                    return feed;
                });
            });
        }).exceptionally(ex -> {
            log.error("生成用户动态流失败", ex);
            return getDefaultFeed(userId);
        });
    }
    
    private int calculateFeedScore(Post post, Long userId) {
        // 计算内容在用户动态流中的分数
        int score = 0;
        score += post.getLikeCount() * 2;
        score += post.getCommentCount() * 3;
        score += post.getShareCount() * 5;
        
        // 时间衰减
        long hoursSincePosted = Duration.between(post.getCreatedAt(), LocalDateTime.now()).toHours();
        score -= hoursSincePosted * 2;
        
        return Math.max(0, score);
    }
}

  4.2 内容审核系统

@Service
public class ContentModerationService {
    
    private final ExecutorService executor = Executors.newFixedThreadPool(30);
    
    public CompletableFuture<ModerationResult> moderateContent(ContentSubmission content) {
        // 并行执行多种审核检查
        CompletableFuture<TextModerationResult> textFuture = CompletableFuture
            .supplyAsync(() -> moderateText(content.getText()), executor);
            
        CompletableFuture<ImageModerationResult> imageFuture = CompletableFuture
            .supplyAsync(() -> moderateImages(content.getImages()), executor);
            
        CompletableFuture<SpamDetectionResult> spamFuture = CompletableFuture
            .supplyAsync(() -> detectSpam(content), executor);
            
        CompletableFuture<SensitiveInfoResult> sensitiveInfoFuture = CompletableFuture
            .supplyAsync(() -> checkSensitiveInfo(content), executor);
            
        CompletableFuture<UserReputationResult> reputationFuture = CompletableFuture
            .supplyAsync(() -> checkUserReputation(content.getUserId()), executor);
        
        return CompletableFuture.allOf(
            textFuture, imageFuture, spamFuture, sensitiveInfoFuture, reputationFuture
        ).thenApply(v -> {
            ModerationResult result = new ModerationResult();
            
            try {
                TextModerationResult textResult = textFuture.get();
                ImageModerationResult imageResult = imageFuture.get();
                SpamDetectionResult spamResult = spamFuture.get();
                SensitiveInfoResult sensitiveResult = sensitiveInfoFuture.get();
                UserReputationResult reputationResult = reputationFuture.get();
                
                // 综合审核结果
                result = combineResults(textResult, imageResult, spamResult, 
                                      sensitiveResult, reputationResult);
                
            } catch (Exception e) {
                log.error("内容审核异常", e);
                result.setAction(ModerationAction.MANUAL_REVIEW);
                result.setReason("系统异常,需人工审核");
            }
            
            return result;
        });
    }
    
    private ModerationResult combineResults(TextModerationResult text, 
                                          ImageModerationResult image,
                                          SpamDetectionResult spam,
                                          SensitiveInfoResult sensitive,
                                          UserReputationResult reputation) {
        ModerationResult result = new ModerationResult();
        
        // 严重违规直接拒绝
        if (text.containsHateSpeech() || image.containsInappropriateContent() || 
            sensitive.containsPersonalInfo()) {
            result.setAction(ModerationAction.REJECT);
            result.setReason("内容违规");
            return result;
        }
        
        // 垃圾内容处理
        if (spam.isSpam() && reputation.getScore() < 0.5) {
            result.setAction(ModerationAction.REJECT);
            result.setReason("疑似垃圾内容");
            return result;
        }
        
        // 可疑内容人工审核
        if (text.getSuspiciousScore() > 0.7 || image.getSuspiciousScore() > 0.7) {
            result.setAction(ModerationAction.MANUAL_REVIEW);
            result.setReason("内容可疑,需人工审核");
            return result;
        }
        
        // 通过审核
        result.setAction(ModerationAction.APPROVE);
        result.setReason("审核通过");
        return result;
    }
}

5. 物联网场景

  5.1 设备数据处理

@Service
public class IoTDataProcessor {
    
    private final ExecutorService executor = Executors.newFixedThreadPool(100);
    
    public CompletableFuture<DeviceStatusSummary> processDeviceData(String deviceId) {
        // 并行处理设备的不同类型数据
        CompletableFuture<SensorData> sensorFuture = CompletableFuture
            .supplyAsync(() -> getLatestSensorData(deviceId), executor);
            
        CompletableFuture<List<AlertRule>> alertRulesFuture = CompletableFuture
            .supplyAsync(() -> getAlertRules(deviceId), executor);
            
        CompletableFuture<DeviceHealth> healthFuture = CompletableFuture
            .supplyAsync(() -> checkDeviceHealth(deviceId), executor);
            
        CompletableFuture<List<HistoricalData>> historyFuture = CompletableFuture
            .supplyAsync(() -> getHistoricalData(deviceId, Duration.ofHours(24)), executor);
        
        return sensorFuture.thenCombine(alertRulesFuture, (sensorData, alertRules) -> {
            // 检查报警规则
            List<Alert> alerts = checkAlerts(sensorData, alertRules);
            
            return CompletableFuture.allOf(healthFuture, historyFuture)
                .thenApply(v -> {
                    try {
                        DeviceHealth health = healthFuture.get();
                        List<HistoricalData> history = historyFuture.get();
                        
                        DeviceStatusSummary summary = new DeviceStatusSummary();
                        summary.setDeviceId(deviceId);
                        summary.setCurrentData(sensorData);
                        summary.setHealth(health);
                        summary.setAlerts(alerts);
                        summary.setTrends(calculateTrends(history));
                        summary.setPredictions(predictFutureValues(history));
                        
                        // 如果有严重报警,异步发送通知
                        if (alerts.stream().anyMatch(Alert::isCritical)) {
                            sendCriticalAlertAsync(deviceId, alerts);
                        }
                        
                        return summary;
                    } catch (Exception e) {
                        log.error("处理设备数据失败: " + deviceId, e);
                        return createErrorSummary(deviceId, e);
                    }
                });
        }).get();
    }
    
    private void sendCriticalAlertAsync(String deviceId, List<Alert> alerts) {
        CompletableFuture.runAsync(() -> {
            alerts.stream()
                .filter(Alert::isCritical)
                .forEach(alert -> {
                    try {
                        notificationService.sendCriticalAlert(deviceId, alert);
                    } catch (Exception e) {
                        log.error("发送关键报警失败", e);
                    }
                });
        }, executor);
    }
}

  5.2 智能家居场景联动

@Service
public class SmartHomeService {
    
    public CompletableFuture<Void> executeScenario(String scenarioId, String userId) {
        return CompletableFuture.supplyAsync(() -> {
            // 获取场景配置
            Scenario scenario = scenarioService.getById(scenarioId);
            if (!scenario.isEnabled()) {
                throw new IllegalStateException("场景未启用");
            }
            return scenario;
        }).thenCompose(scenario -> {
            // 并行执行场景中的所有设备控制
            List<CompletableFuture<Void>> deviceActions = scenario.getActions().stream()
                .map(action -> executeDeviceAction(action, userId))
                .collect(Collectors.toList());
            
            return CompletableFuture.allOf(deviceActions.toArray(new CompletableFuture[0]));
        }).thenRun(() -> {
            // 记录场景执行日志
            log.info("场景执行完成: {}", scenarioId);
        }).exceptionally(ex -> {
            log.error("场景执行失败: " + scenarioId, ex);
            return null;
        });
    }
    
    private CompletableFuture<Void> executeDeviceAction(DeviceAction action, String userId) {
        return CompletableFuture.runAsync(() -> {
            try {
                switch (action.getDeviceType()) {
                    case LIGHT:
                        lightService.control(action.getDeviceId(), action.getParameters());
                        break;
                    case AIR_CONDITIONER:
                        airConditionerService.control(action.getDeviceId(), action.getParameters());
                        break;
                    case CURTAIN:
                        curtainService.control(action.getDeviceId(), action.getParameters());
                        break;
                    case SECURITY_SYSTEM:
                        securityService.control(action.getDeviceId(), action.getParameters());
                        break;
                }
                
                // 记录设备控制日志
                deviceLogService.recordAction(userId, action);
                
            } catch (Exception e) {
                log.error("设备控制失败: " + action.getDeviceId(), e);
                throw new RuntimeException("设备控制失败", e);
            }
        });
    }
}

6. 日志分析场景

  6.1 实时日志分析

@Service
public class LogAnalysisService {
    
    private final ExecutorService executor = Executors.newFixedThreadPool(20);
    
    public CompletableFuture<SystemHealthReport> analyzeSystemHealth() {
        LocalDateTime now = LocalDateTime.now();
        LocalDateTime oneHourAgo = now.minusHours(1);
        
        // 并行分析不同维度的系统健康状况
        CompletableFuture<ErrorAnalysis> errorFuture = CompletableFuture
            .supplyAsync(() -> analyzeErrors(oneHourAgo, now), executor);
            
        CompletableFuture<PerformanceAnalysis> performanceFuture = CompletableFuture
            .supplyAsync(() -> analyzePerformance(oneHourAgo, now), executor);
            
        CompletableFuture<SecurityAnalysis> securityFuture = CompletableFuture
            .supplyAsync(() -> analyzeSecurity(oneHourAgo, now), executor);
            
        CompletableFuture<ResourceUsageAnalysis> resourceFuture = CompletableFuture
            .supplyAsync(() -> analyzeResourceUsage(oneHourAgo, now), executor);
            
        CompletableFuture<UserBehaviorAnalysis> userBehaviorFuture = CompletableFuture
            .supplyAsync(() -> analyzeUserBehavior(oneHourAgo, now), executor);
        
        return CompletableFuture.allOf(
            errorFuture, performanceFuture, securityFuture, resourceFuture, userBehaviorFuture
        ).thenApply(v -> {
            SystemHealthReport report = new SystemHealthReport();
            
            try {
                ErrorAnalysis errorAnalysis = errorFuture.get();
                PerformanceAnalysis performanceAnalysis = performanceFuture.get();
                SecurityAnalysis securityAnalysis = securityFuture.get();
                ResourceUsageAnalysis resourceAnalysis = resourceFuture.get();
                UserBehaviorAnalysis userBehaviorAnalysis = userBehaviorFuture.get();
                
                report.setErrorAnalysis(errorAnalysis);
                report.setPerformanceAnalysis(performanceAnalysis);
                report.setSecurityAnalysis(securityAnalysis);
                report.setResourceAnalysis(resourceAnalysis);
                report.setUserBehaviorAnalysis(userBehaviorAnalysis);
                
                // 计算综合健康分数
                report.setHealthScore(calculateHealthScore(
                    errorAnalysis, performanceAnalysis, securityAnalysis, 
                    resourceAnalysis, userBehaviorAnalysis
                ));
                
                // 生成建议
                report.setRecommendations(generateRecommendations(report));
                
                // 如果健康分数过低,异步发送告警
                if (report.getHealthScore() < 0.7) {
                    sendHealthAlertAsync(report);
                }
                
            } catch (Exception e) {
                log.error("系统健康分析失败", e);
                report.setError("分析失败: " + e.getMessage());
            }
            
            return report;
        });
    }
    
    private void sendHealthAlertAsync(SystemHealthReport report) {
        CompletableFuture.runAsync(() -> {
            try {
                alertService.sendSystemHealthAlert(report);
            } catch (Exception e) {
                log.error("发送系统健康告警失败", e);
            }
        }, executor);
    }
}

7. 其他

  7.1 批处理任务

# 处理大量文件、发送邮件、生成报告等任务可以通过异步方式并行执行,显著缩短总体处理时间。

 

posted @ 2018-08-08 11:57  lvlin241  阅读(136)  评论(0)    收藏  举报